Documentation

Getting Started

This tutorial explains how to get started with Mate. As an example, we'll create a stock quote retrieval screen
which sends the quote symbol to the server, receives the current price and stores it in the model for the view to
show.

All Mate projects must have:

1. One or more events (custom or built-in)
2. One or more Event Maps

Typically, the basic steps to create a Mate project are:

. Add the compiled framework code to your project (Mate.swc).

. Create a file that will be the EventMap .

. Include the event map in your main Application file.

. Create a custom event.

. Somewhere, dispatch that event.

. Add EventHandlers in your event map that listen for the event type you dispatched.

. Execute some actions inside the EventHandlers block (ie: call the server, store data, etc).
. Repeat 4-7 for every event you need.

ONO AR WN -

Get the source for this tutorial

Creating a new project

In Flex Builder, create a new Flex project called "StockQuotesExample". Let the main source folder be "src"
(default folder).

In the libs folder it creates, place the compiled framework SWC (Mate.swc). This will let you use all Mate classes
and tags.

The Quote custom event

Every Mate project is driven by events. In the stock quote example, when the user enters the stock symbol and
clicks on the "Get Quote" button, we'll create a new event containing that information that will be sent to the
server. Therefore, we need to create a custom event to indicate that the user wants to submit the symbol and
retrieve the current price.

Our event will be very simple and it will contain one property: the symbol.
package com asfusi on. mat e. st ockQuot eExanpl e. event s

{

i mport flash.events. Event;

http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/examples/stock-quotes

public class QuoteEvent extends Event

{
public static const GET: String = "get QuoteEvent";
public var synbol : String;

public function QuoteEvent (type: String, bubbl es: Bool ean=true,
cancel abl e: Bool ean=f al se)

{

super (type, bubbl es, cancel able);

The code above assumes this event is contained within the package:
com.asfusion.mate.stockQuoteExample.events

The event also contains a constant that we will use to specify the event type. One event can specify more than
one event type.

We also make this event bubble up by default (the second argument of the constructor). Otherwise, we will need
to remember to specify it when we instantiate it.

Creating the UI

The user interface will only need a text input and a button:

Stock Quotes

symbol: apapL Get Quote

Price: 172.24

Dispatching the QuoteEvent

When the user clicks the Get Quote button, we'll create the QuoteEvent and dispatch it:
i mport com asfusi on. mat e. st ockQuot eExanpl e. event s. Quot eEvent ;
private function getQuote() : void {

var quot eEvent: Quot eEvent = new Quot eEvent (Quot eEvent . GET);
guot eEvent . synbol = synbol | nput . text;

di spat chEvent (quot eEvent);
}

The Event Map

The EventMap is where we place the handlers for all the events the application creates (there could be more
than one event map, though).

To add the event map, we need to create a new MXML file, with name "MainEventMap". This component must
extend from EventMap . At this point, the event map would be empty and it should look like this:

<?xm version="1.0" encodi ng="utf-8"?>
<Event Map
xm ns: nk="http://ww. adobe. com 2006/ mxmi "
xm ns="http://mte. asfusion.conl ">

</ Event Map>

Note: we use no namespace for http://mate.asfusion.com so that we don't have to add it to every tag in the
event map. You can copy the code above to your file as a starting point.

We'll add the event map to our main Application file:
<?xm version="1.0" encodi ng="utf-8"?>
<nx: Application xmns: nk="http://ww. adobe. conl 2006/ mrxm " | ayout ="absol ut e"
xm ns: maps="com asf usi on. mat e. st ockQuot eExanpl e. maps. *" >
<maps: Mai nEvent Map />
</ nx: Appl i cati on>

Setting up debugging

In order to know whether our event map is receiving the events that get dispatched, we add the debugger tag to
the event map:

<Debugger | evel ="{Debugger. ALL}" />
The EventMap_so far:

<?xm version="1.0" encodi ng="utf-8"?>
<Event Map xm ns: mx="http://ww. adobe. conl 2006/ nxm " xm ns="http:// mate. asfusi on.com ">

<Debugger | evel ="{Debugger. ALL}" />

http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/eventmap

</ Event Map>

Listening for QuoteEvent.GET

In our event map, we will listen for the quote event so that we can send the request to the server.

We'll add an EventHandlers tag that will specify the event type we are listening to. We'll also set the debug
attribute to true so that we can see when the handlers run in the debugging output window.

<Event Handl ers type="{Quot eEvent. GET}" debug="true">
</ Event Handl er s>
At the top of the event map we'll need to import the event class.

<nx: Scri pt >
<! [CDATA
i mport com asfusi on. mat e. st ockQuot eExanpl e. event s. Quot eEvent ;

11>

</ nx: Scri pt >

Inside this EventHandlers block, we'll place the actions we want to perform when the event is dispatched. In this
case, we would like to make a server call, for which we'll use the RemoteObjectinvoker tag. Assuming the
service in a folder called stockQuoteExample and it is called QuoteService, you will specify the call as follows:
<Renot eObj ect | nvoker desti nati on="Col dFusi on" source="st ockQuot eExanpl e. Quot eSer vi ce"
nmet hod="get Quot e"

argurent s="{event . synbol }"

debug="true">

</ Renot ehj ect | nvoker >

We are calling the method getQuote on that service and sending the symbol coming from the event as an
argument of the remote method call.

Handling the server result

The server returns a numerical value with the stock's current price. We will handle that result inside the
RemoteObjectinvoker 's resultHandlers and call the function "storeQuote" on the QuoteManager class.

<Event Handl ers type="{Quot eEvent. GET}" debug="true">
<Renot eQbj ect | nvoker desti nati on="Col dFusi on"
sour ce="st ockQuot eExanpl e. Quot eSer vi ce"
nmet hod="get Quot e"
argunment s="{event. synbol }"
debug="true">

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker

<resul t Handl er s>

<Met hodl nvoker generat or ="{Quot eManager}"
met hod="st oreQuote" argunents="{resul tObject}"/>

</ resul t Handl er s>
</ Renot e(bj ect | nvoker >
</ Event Handl| er s>

If you have shared data that many views will access, you may want to create a "model". In this simple example,
you don't really need a model, but because it is something you will usually need, we'll add it anyway.

Inside the resultHandlers, we are usinga Methodlnvoker to create an instance of QuoteManager (if it doesn't
already exist) and then call the method storeQuote. Inside the resultHandlers, we can access the result coming
from the server, which we can pass as the argument of the method call.

Creating our Model, the QuoteManager

The QuoteManager will handle the business logic that has to do with quotes. It will also store the current
symbol's quote so that it can be used by views. In the previous section, we were calling the method
storeQuote(price) that stores the value of the current symbol's price. The class definition for this manager is:

package com asfusi on. mat e. st ockQuot eExanpl e. busi ness

{
public class Quot eManager
{
[Bi ndabl e]
public var currentPrice: Nunber;
public function storeQuote(price: Number):void {
currentPrice = price;
}
}
}

Ideally, the currentPrice property would be read-only instead of public. But in order to do that and still making it
bindable, we will need to do some additional work.

Also, when the method storeQuote is called, we can execute any necessary business logic.

Showing the current price value in the view

http://mate.asfusion.com/page/documentation/tags/methodinvoker

So far, when the event is dispatched, we make a service call, the server returns the current price and that price
is stored in the QuoteManager. But now we need to be able to show that value in the view.

In the view where we want to show the price, we'll add a property:

[Bi ndabl e]
public var price: Nunber;

and then show that number anywhere in the view we want, for example, in a Label:
<nx: Label text="Price: {price}" />

That's all we need in the view.

Getting the current price from the model Manager to the view

But how does the view get this variable populated from the price stored in the QuoteManager?

In our event map, we'll add another set of tags. These tags will assign a property on the model to a property on
the view, and because the property on the model is bindable, the view will always get the most current value.

"{Quot ePanel }"

<Propertylnjector targetKey="price" source="{QuoteManager}" sourceKey="currentPrice"
/>

When you add this, make sure you have all the necessary import statements at the top of your event map.

Event-Service call-Model Manager-View

Two-way communication via model: Injecting the view

[Event Bus]

< v
ModelManager

|
I
I
|
I
I
1

EventHandlers

e -

View <

View dispatches an event that bubbles up (bubbles = true) or view dispatches an event using the
Dispatcher tag

The event arrives to an EventHandlers block in the EventMap that is registered to listen to this
event type

Inside the EventHandlers, a list of actions is executed in order. In this example, a server call is
made.

Amethod on a Model Manager is executed, sefting some data on the manager.

Via Bindings, the View listens for changes on the Medel Manger and updates itself.

View the example running. view the source and download the example in the example page.

Overview

Event map

Central to Mate is the Event Map . In the Event Map (or multiple event maps), you define what needs to happen
when certain events are dispatched. Each event type you want to listen to will have its own Event Handlers
block in the event map.

<Event Map xm ns="http:// mate. asfusi on.conl ">
...event handl ers bl ocks here...
</ Event Map>

An EventMap is typically an stand-alone mxml file, and you must place it in your Application file. This
requirement is due to the component creation cycle that Flex follows. If you place your event map deep inside
your application, it may not be instantiated early enough to listen to all the events. Placing it in the Application
file also allows you to be able to listen to early Flex events such as FlexEvent.PREINITIALIZE.

<nmx: Appl i cation xm ns: nx="http://ww. adobe. com 2006/ mxnmi "

http://mate.asfusion.com/page/examples/stock-quotes
http://mate.asfusion.com/page/documentation/tags/eventmap

xm ns: maps="com your donai n. maps. *" >

<maps: MyEvent Map />

...other application conponents here...
</ nx: Appl i cati on>

Event Handlers

An Event Handlers block defined in the Event Map will run whenever an event of the type specified in the
EventHandlers ' "type" argument is dispatched. Note that in order for the handlers to be able to listen for the
given event, this event must have its bubbling setting as true and be dispatched from an object that has
Application as its root ancestor, or the event must be dispatched by a Mate Dispatcher (such is the case when
dispatching events from a PopUp window).

To define a an Event Handlers block, use the EventHandlers tag.

<Event Handl ers type="nyEvent Type">
here what you want to happen when this event is dispatched...
</ Event Handl er s>

As mentioned earlier, you place these Event Handler lists inside an Event Map:
<Event Map xm ns="http:// mate. asfusi on. com ">

<Event Handl ers type="mnmyEvent Type">
here what you want to happen when this event is dispatched...
</ BEvent Handl er s>

<Event Handl ers type="myQ her Event Type" >
here what you want to happen when this other event is dispatched...
</ BEvent Handl er s>

</ Event Map>

Inside the EventHandlers tag, you will place all the handlers that need to be called when the event is
dispatched.

For example, if you wanted the handler list to run, you must dispatch an event of type "myEventType". Say you
have a button that when clicked, the event is dispatched (note that this event has its bubble property set to true):

private function buttondicked():void {
event : MyCust onEvent = new MyCust onEvent (" nyEvent Type", true);
di spat chEvent (event);

}

This example assumes you have a custom event class called MyCustomEvent. When the button is clicked and

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers

the function buttonClicked() is executed, the first event handler list will receive the event and run each of the
handlers it contains in order.

There are several handlers you can specify and each of them serves a different purpose:

e MethodInvoker

e CommandInvoker

e EventAnnouncer

e WebServicelnvoker
e HTTPServicelnvoker

e RemoteObjectinvoker
e ObjectBuilder

e DataCopier

e StopHandlers

Method Invoker

Methodinvoker is one of the most used tags. When placed inside an EventHandlers tag and the handlers are
executed, it will create an object of the class specified in the "generator" attribute. It will then call the function
specified in the "method" attribute on the newly created object. You can pass arguments to this function that

come from a variety of sources, such as the event itself, a server result object, or any other value.

<Met hodl nvoker
gener at or="Cl assNaneTol nstanti at e"
nmet hod="net hodToExecut e"
argunment s="{["argunentl', "argunment2']}"/>

The above example would be the same as doing the following in ActionScript code:

var nmyWbrker: Cl assNameTol nstantiate = new Cl assNameTol nstantiate();
nyWor ker . met hodToExecut e(' argunent1', 'argunent2');

There are other ways of specifying attributes and there are additional attributes you can use. Refer to the
documentation for detailed use information.

Command Invoker

The Commandinvoker tag is very similar to the MethodInvoker tag, but limited. It only allows to specify the
generator class to instantiate. It will always call the method "execute" and pass the current event as its only
argument. This tag is very useful when reusing Cairngorm commands.

<Commandl nvoker gener at or =" ConmandCl assNaneTol nstanti ate" />

Event Announcer

Whenever you want to trigger another event inside an event handlers block, you use the EventAnnouncer tag.
<Event Announcer type="nyEvent Type" generator="Event Cl assNaneTol nstanti ate" />

You can also provide properties for the newly created event:

http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/commandinvoker
http://mate.asfusion.com/page/documentation/tags/eventannouncer
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/httpserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/objectbuilder
http://mate.asfusion.com/page/documentation/tags/datacopier
http://mate.asfusion.com/page/documentation/tags/stophandlers
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/commandinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/eventannouncer

<Event Announcer type="nyEvent Type" generator="MEvent Cl ass">
<Properties nyProperty="nyVal ue" nyProperty2="other val ue"/>
</ Event Announcer >

As in the case of the MethodInvoker arguments, properties for the new event can be brought from the original
event, a server result, and other sources.

The above example would be the same as doing the following in ActionScript code:

var nmyEvent: MyEvent O ass = new MyEvent C ass(" nyEvent Type", true);
nyEvent . nyProperty = "myVal ue";

myEvent . myProperty2 = "ot her val ue”;

di spat chEvent (nyEvent);

The main difference is that in the case of the EventAnnouncer, the event is dispatched whenever the container
event handler list is run and in the order specified in the list.

Service Calls

You can call different service types by using the HTTPServicelnvoker tag, the WebServicelnvoker tag or the
RemoteObjectinvoker tag. If you have an already created service (HTTP service, Web Service, and Remote
Object), you can use the "instance" attribute so that you don't have to specify the service properties in the Event
Map. In that way, you can use a separate file to create all the services you use. You can use the Service Invoker
tags (WebServicelnvoker , RemoteObjectinvoker , HTTPServicelnvoker) to create your services inline in the event
map.

<WebServi cel nvoker instance="{nyServicelnstance}" nethod="server Met hodToCal | "
arguments="{["'argunentl', "argunent2']}" />

When a service is called, there are two type of responses you can get: either a result with the contents of what
the service returned, or a fault when there was an error when contacting the server or an error was thrown by the
server. It's important to note that these possible responses are received asynchronously, so that after the request
to the server was made, it is not possible to know when the response will be received.

When you use any of the Service Invoker tags inside the EventHandlers block, the server request is made and
the list execution continues. Any other handlers placed after the service will execute right after the server

request is made. But what if you want to wait until the server responds to the request? Inside the Service Invoker
tags, you can place another list of handlers that will execute when the server replies, or throws an error.

<WebServi cel nvoker instance="{nyServicelnstance}" ...>
<resul t Handl er s>
this Isit of handl ers executes when server returns results ...

</ resul t Handl er s>

</ WebSer vi cel nvoker >

http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/eventannouncer
http://mate.asfusion.com/page/documentation/tags/services/httpserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/httpserviceinvoker
http://mate.asfusion.com/page/documentation/tags/eventhandlers

In the same way, you can place another sequence that will execute when the request ends up in an error.
<WebServi cel nvoker instance="{nyServicelnstance}" ...>

<f aul t Handl er s>
this sequence executes when server returns an error
</ faul t Handl er s>

</ WebSer vi cel nvoker >

Of course you can have both sequences inside one service tag:
<WebServi cel nvoker instance="{nyServicelnstance}" ...>

<resul t Handl er s>
this sequence executes when server returns results ...
</ resul t Handl er s>

<f aul t Handl er s>
this sequence executes when server returns an error
</ f aul t Handl er s>

</ WebSer vi cel nvoker >

WebService Invoker

The WebServicelnvoker tag is used to create a web service instance and call a method on the web service
created. To use this tag, you need to specify its wsdl attribute that will determine the address of the webservice,
or you use the instance attribute as specified in the previous section. You also need to specify the method to
call.

<WebServi cel nvoker wsdl ="wsdAddr ess” net hod="net hodToCal | * arguments="{["'argunent1',
"argunment2']}">

</ \WbSer vi cel nvoker >
This tag will also accept all mx.rpc.soap.WebService tag attributes.

As specified in the previous section, you can have resultHandlers and faultHandlers inside the tag to handle
service results and faults.

<WebServi cel nvoker wsdl ="wsdAddr ess" net hod="net hodToCal | " argunents="{["'argunent1',
"argunent2']}">
<resul t Handl er s>
t hese handl ers execute when server returns results ...
</ resul t Handl er s>

http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker

<f aul t Handl er s>
these handl ers execute when server returns an error
</ faul t Handl er s>
</ WebSer vi cel nvoker >

HTTPService Invoker

The HTTPServicelnvoker tag is used to create an HTTP Service instance and make a GET or POST request to
that service. To use this tag, you need to specify the same attributes you would when creating an HTTP service
with the <mx:HTTPService> tag, or you use the instance attribute as specified in the "Service Calls" section.

<HTTPSer vi cel nvoker url="URLToCall" />
This tag will also accept all mx.rpc.http.HTTPService tag attributes.
You can have resultHandlers and faultHandlers inside the tag to handle service results and faults.

<HTTPSer vi cel nvoker url="URLToCal |l ">
<resul t Handl er s>
t hese handl ers execute when server returns results ...
</ resul t Handl er s>
<f aul t Handl er s>
these handl ers execute when server returns an error
</ faul t Handl er s>
</ HTTPSer vi cel nvoker >

RemoteObject Invoker

The RemoteObjectinvoker tag is used to create a Remote Object instance and call a method on the object
created. To use this tag, you need to specify the same attributes you would when creating a remote object with
the <mx:RemoteObject> tag, or you use the instance attribute as specified in the "Service Calls" section. In
addition, you need to specify what method to call.

<Renot ebj ect | nvoker
destinati on="Your Desti nation"
sour ce="pat h.to.your. service"
met hod="net hodToCal | "
argunment s="{["argunentl', "argunment2']}" />

This tag will also accept all mx.rpc.remoting.RemoteObject tag attributes.
You can have resultHandlers and faultHandlers inside the tag to handle service results and faults.

<Renot e(bj ect | nvoker destinati on="YourDesti nation" source="path.to.your.service"
nmet hod="net hodToCal | " argunments="{["'argunentl1l' , "argunent2']}">
<resul t Handl er s>

http://mate.asfusion.com/page/documentation/tags/services/httpserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker

this sequence executes when server returns results ...
</ resul t Handl er s>
<faul t Handl er s>
this sequence executes when server returns an error
</ faul t Handl er s>
</ Renot eMbj ect | nvoker >

Data Copier

The DataCopier_tag is a handy tag to quickly copy values into some storage. You can use the event handler
list's "data" as a temporary storage from where handlers that follow in the list can read values. You can also use
some other external variable as the storage.

<Dat aCopi er destination="data" destinati onKey="soneProperty" source="result"
sour ceKey="soneProperty" />

Stop Handlers

Event Handlers run all handlers in order. If you need to stop the handlers execution before it reaches the end of
the list, you can use the StopHandlers tag.

If there exists a MethodInvoker tag right before the StopHandlers tag, and the execution of the function returned
a value, you can compare it to some other value and stop the handlers if it is equal.

<St opHandl ers | ast Ret ur nEqual s="soneVal ue" />

A more flexible approach is to use the stopFunction attribute and handle the logic externally. The function that
you implement will return true if the execution must stop or false if not.

<St opHandl ers st opFuncti on="nySt opSequenceFunti on" />

Then you implement your evaluation function:

private function myStopFunction(scope: Scope) : Bool ean {
... here you do some eval uation to determnine
whet her to stop the execution of the Iist or not...
return fal se;

/lor return true;

Message Handlers

The list of EventHandlers runs when an event of the type specified is dispatched. The list of MessageHandlers,
on the other hand, runs whenever a Message sent by a Flex Messaging Service is received. This message must
match certain criteria similar to the criteria specified when using the <mx:Consumer> tag.

To define the handlers, use the MessageHandlers tag.

<MessageHandl ers desti nati on="Your Gat eway" >

http://mate.asfusion.com/page/documentation/tags/datacopier
http://mate.asfusion.com/page/documentation/tags/stophandlers
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/stophandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers

here what you want to happen when this nessage is received ...
</ MessageHand| er s>

Just like when using the EventHandlers tag, you place this tag inside an EventMap . Between the tag block, you
place the actions to perform when the message is received. You can use the same tags as you would inside the
EventHandlers tag: MethodInvoker , EventAnnouncer , etc.

Tags
Learn how to use each Mate tag

EventMap

A fundamental part of Mate is the EventMap tag. It allows you define mappings for the events that your
application creates. It is basically a collection of EventHandlers blocks, where each block matches an event

type.

<Event Map>
...event handler lists here...
</ Event Map>

The EventMap tag doesn't have any attribute, but its importance lies in the tags in can contain.

Inner tags

EventHandlers

The event map contains an EventHandlers block for every event that you want to listen to. Each block is
executed every time an event of the type specified is dispatched. Blocks are defined by using the
EventHandlers tag.

<Event Map xm ns="http:// mate. asfusi on.conl ">
<Event Handl ers type="nyEvent Type">
here what you want to happen when this event is dispatched...
</ Event Handl er s>
<Event Handl ers type="nyQ her Event Type" >
here what you want to happen when this other event is dispatched...
</ Event Handl er s>

</ mat e: Event Map>

See EventHandlers for more information.

MessageHandlers

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/eventannouncer
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers

In addition to EventHandlers blocks, an event map can also contain MessageHandlers blocks. A block of
MessageHandlers will be executed when a given Flex Messaging Service message is received. For the
sequence to run, you must specify the same attributes you would in an <mx:Consumer> tag, so that when a
message is received by the application, it is routed to the correct MessageHandler.

See MessageHandlers for more information.
An event map may contain any combination of EventHandlers and MessageHandlers tags:
<Event Map xm ns="http:// mate. asfusi on. com ">
<Event Handl ers type="mnmyEvent Type">
here what you want to happen when this event is dispatched...
</ BEvent Handl er s>
<MessageHand!l ers desti nati on="Col dFusi onGat eway" >
here what you want to happen when this nessage is received ...

</ MessageHand| er s>

</ Event Map>

Using Smart Objects

The EventMap tag provides a set of Smart Objects that can be used within the EventHandlers and
MessageHandlers tags. These objects expose data such as the current event, the value returned by a
MethodInvoker_or the result of a server call.

Examples of usage can be found in the documentation for MethodInvoker , EventAnnouncer and the other tags
that can be used inside the EventHandlers and MessageHandlers.

These smart objects are specified by using bindings, but it is important to note that this binding is executed only
once, at the beginning of the application.

event

Available only inside the EventHandlers tag. It refers to the event that made the list of handlers execute. The
event itself or properties of the event can be used as arguments of Methodlnvoker methods, service methods,
properties for any of the handlers, etc.

For example, a method called by a Methodlnvoker can receive event properties as arguments, or the event itself:
<Event Handl ers type="nyEvent Type" >

<Met hodl nvoker
gener at or ="{ \yWor ker }"

http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/eventannouncer
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker

nmet hod="doWr k"
argument s="{[event . user Nane, event.age]}"/>

<Met hodl nvoker
generator="{ MyWrker}"
met hod="doWor k"
argunents="{event}"/>
</ BEvent Handl er s>

message

Only available inside a MessageHandlers tag. It refers to the message received that made the list of handlers
execute. The message itself or properties of the message can be used as arguments of MethodInvoker methods,
service methods, properties for any of the handlers, etc.

For example, a method called by a MethodIlnvoker can receive message properties as arguments, or the
message itself:

<MessageHandl ers ...>
<Met hodl nvoker
generator="{ MyWrker}"
nmet hod="doWbr k"
argunent s="{[nessage. user Nane, nessage. age]}"/>

<Met hodl nvoker
generator ="{ MyWor ker}"
met hod="doWor k"
argument s="{message}"/ >
</ MessageHand| er s>

resultObject

Only available inside a resultHandlers inner tag. It refers to the result returned by a service that made the result
handlers execute. The result itself or properties of the result can be used as arguments of MethodInvoker
methods, service methods, properties for any of the handlers, etc.

For example, a method called by a Methodlnvoker can receive result properties as arguments, or the result itself:

<resul t Handl er s>
<Met hodl nvoker
generator="{ MyWrker}"
nmet hod="doWbr k"
argunents="{[resul t Cbj ect. user Nane, resultCbject.age]}"/>

<Met hodl nvoker
generator ="{ MyWor ker}"
met hod="doWor k"
argument s="{resul t Cbject}"/>

http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker

</ resul t Handl er s>

See more information about resultHandlers inner tag at: " Handling a service result or fault "

fault

Only available inside a faultSequence inner tag. It refers to the fault returned by a service that made the sub
sequence execute. The fault itself or properties of the fault can be used as arguments of MethodInvoker
methods, service methods, properties for any of the handlers, etc.

For example, an object instantiated by a MethodInvoker can receive fault properties as arguments, or the fault
itself:

<faul t Handl er s>
<Met hodl nvoker
gener at or ="{ \yWor ker }"
nmet hod="doWor k"
argunents="{[fault.faultDetail, fault.errorlD]}"/>

<Met hodl nvoker
generator="{ MyWrker}"
nmet hod="doWbr k"
argunment s="{fault}"/>
</ faul t Handl er s>

See more information about faultHandlers inner tag at: "Handling a service result and fault".

lastReturn

lastReturn is always available, although its value might be null . It typically represents the value returned by a
method call made by a Methodlnvoker , but other handlers might also return a value, such as:

e token: returned by RemoteObjectinvoker , WebServicelnvoker and HTTPServicelnvoker (value is returned
before call result is received)

eboolean value : returned by EventAnnouncer after dispatching the event. True for successful dispatch,
false for unsuccessful (either a failure or when preventDefault() was called on the event).

All other handlers will nullify any previous value.

If that returned value is an object, you can access specific properties with the same syntax used by other smart
objects: lastReturn.myProperty

See " Using lastReturn " in the MethodInvoker tag documentation.

data

Every EventHandlers and MessageHandlers block contain a placeholder object called "data". This object can
be used to store temporary data that many tags in the list can share.

http://mate.asfusion.com/page/documentation/tags/services/handling-a-service-result-or-fault
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/eventannouncer
http://mate.asfusion.com/page/documentation/tags/methodinvoker/using-lastreturn
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/methodinvoker

For example, a function called by a MethodInvoker can receive data properties as arguments, or the data itself:

<Met hodl nvoker
gener at or ="{ \yWor ker }"
nmet hod="doWbr k"
argunents="{data}"/ >

<Met hodl nvoker
generator="{ MyWrker}"
met hod="doWor k"
argunent s="{[dat a. user Nane, event.age]}"/>

scope

Every handlers list contains an object (IScope) that represents the running list's scope. As an IScope, you can
use it to stop the currently running list. If you cast it to Scope, for example, you can also access an event
dispatcher, the current event and other properties. This scope can be used by functions called by
MethodInvoker s.

Smart Objects limitations

SmartObject cannot be casted. For example, if you are expecting a custom event MyEvent, you cannot cast
the event SmartObject to your custom class. Therefore, this is not allowed:
arguments="{[MyEvent(event).username]}"

Where should the Event Map go?

Typically, the Event Map is a standalone mxml file, although it can be placed inside any other mxml file. When
the Event Map is a standalone file, any namespace used inside must be added. Inside the event map, we have
the default namespace to be the mate the namespace so that we don't have to prefix the tags with the
namespace.

<Event Map>
...event handler lists here...
</ Event Map>

The best place to put the event map is in the Application file. This is due to the component creation cycle that
Flex follows. If you place your event map deep inside your application, it may not be instantiated early enough
to listen to all the events. Placing it in the Application file also allows you to be able to listen to early Flex
events such as FlexEvent.PREINITIALIZE.

<nx: Appl i cation xm ns: nx="http://ww. adobe. com 2006/ nxni "
xm ns: maps="com your donai n. maps. *" >

<maps: MyEvent Map />

http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker

...other application conponents here...

</ nx: Appl i cati on>

EventHandlers

(This tag must be placed inside an < EventMap > tag)

The list of event handlers defined by the EventHandlers tag that is defined in the EventMap will run whenever
an event of the type specified in the "type" argument is dispatched. Note that in order for the list to be able to

listen for the given event, this event must have its bubbling setting as true and be dispatched from an object

that has Application as its root ancestor, or the event must be dispatched by a Mate Dispatcher (such is the case
when dispatching events from a PopUp window).

<Event Handl ers type="nyEvent Type">
here what you want to happen when this event is dispatched...
</ Event Handl er s>

Attributes
type

String

required

The event type that, when dispatched, should trigger the list of handlers to run. It should match the type
specified in the event when created. All events extending from flash.events.Event have a "type" property.

While this attribute is a string, a constant is most commonly used:

<Event Handl ers type="{MEvent. MY_EVENT_TYPE}" >
here what you want to happen when this event is dispatched...
</ Event Handl er s>

Any bubbling up event or an event dispatched by a Mate Dispatcher can be used, including Flex built-in events
such as FlexEvent. APPLICATION_COMPLETE.

priority
Number

If you expect to have several listeners for the same events (the Event Map, several views, etc), you can assign
each listener a different priority to manage the order at which those listeners will be notified. By default, the
listeners are notified by the order at which they were registered (when they have the same priority). The listeners

http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/eventmap

will be called from highest priority (highest number) to lowest. Default value is 0.

Note that as Flex documentation states, although the listeners will be called in that order, there is no guarantee
that one listener will finish execution before the others are called.

debug

Boolean

Whether to show debugging information for this event handlers block. If true, Console output will show
debugging information as this list runs.

start

Event handler

In the start attribute you can supply an event handler for the event of type ActionListEvent. START. This event is
dispatched right before the handlers are called, when the list starts execution.

Example:

<Event Handl ers type="{M/Event. MY _EVENT TYPE}" start="trace(' Execution of handlers |i st
started!")">

</ Event Handl| er s>

end
Event handler

In the end attribute you can supply an event handler for the event of type ActionListEvent.END. This event is
dispatched right after all the handlers have been called, when the list ends execution (although this event
might be dispatched before asynchronous calls have returned).

Example:

<Event Handl ers type="{M/Event. MY_EVENT_TYPE}" end="trace(' Execution of handlers |ist
ended!')">

</ Event Handl er s>

Inner tags

Allowed inner tags:

e MethodInvoker

e EventAnnouncer

e RemoteObjectinvoker
e WebServicelnvoker

e HTTPServicelnvoker

http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/eventannouncer
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/httpserviceinvoker
http://mate.asfusion.com/page/documentation/tags/objectbuilder

e ObjectBuilder
e ResponseAnnouncer

e ServiceResponseAnnouncer
e CommandInvoker

e DataCopier
e StopHandlers
Order of the inner tags is important

The order in which the inner tags ("handlers") are placed is important because it determines the order in which
each action will be taken.

For example, say you have defined the following sequence:
<Event Handl ers type="nyEvent Type">

<l-- Step 1 -->
<Met hodl nvoker generat or ="\Wr ker One" met hod="doSomeWr k" />

<l-- Step 2 -->
<Event Announcer type="nyEvent TypeTwo" generator="Event Cl assNaneTol nstanti ate" />

<l-- Step 3 -->
<Met hodl nvoker gener at or ="Wr ker Two" met hod="doSonet hi ngEl se" />

</ Event Handl| er s>

In this scenario, when an event of type "myEventType" is dispatched, the following will happen:

1. An instance of WorkerOne will be created and the method doSomeWork() will be called
2. A new event of type "myEventTypeTwo" will be dispatched.
3. An instance of WorkerTwo will be created and the method doSomethingElse() will be called

For more information about the list order when using asynchronous services, refer to " Handling a service result or
fault".
MessageHandlers

(This tag must be placed inside an < EventMap > tag)

The MessageHandlers tag allows you to register a list of handlers as a consumer of a Flex Messaging Service.
All the tags inside the MessageHandlers tag will be executed in order when a Message matching the criteria is
received. This tag accepts the same attributes as the <mx:Consumer> tag.

<MessageHandl ers desti nati on="Your Gat eway" >
here what you want to happen when this nessage is received ...
</ MessageHand! er s>

http://mate.asfusion.com/page/documentation/tags/services/httpserviceinvoker
http://mate.asfusion.com/page/documentation/tags/objectbuilder
http://mate.asfusion.com/page/documentation/tags/responseannouncer
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer
http://mate.asfusion.com/page/documentation/tags/commandinvoker
http://mate.asfusion.com/page/documentation/tags/datacopier
http://mate.asfusion.com/page/documentation/tags/stophandlers
http://mate.asfusion.com/page/documentation/tags/services/handling-a-service-result-or-fault
http://mate.asfusion.com/page/documentation/tags/services/handling-a-service-result-or-fault
http://mate.asfusion.com/page/documentation/tags/eventmap

The above example would be the same as doing the following:
<nx: Consuner desti nati on="Your Gat eway" />

You would also need to create event handlers for the message and fault. That is not necessary when using the
MessageHandlers tag. Inner tags such as MethodInvoker are executed when the message is received. If you
need to handle a fault, you can use the faultHandlers inner tag. See " Handling a subscription fault "

Attributes

debug
Boolean

Whether to show debugging information for this handlers block. If true, Console output will show debugging
information as the list runs.

Other attributes

See mx.messaging.Consumer for a list of attributes.

Inner tags

faultHandlers

A list of handlers to run if the subscription attempt throws an error. See " Handling a subscription fault " below.

Other allowed inner tags:

e MethodInvoker
e EventAnnouncer

e RemoteObjectinvoker
e WebServicelnvoker

e HTTPServicelnvoker

e ResponseAnnouncer

e DataCopier

e StopHandlers

e ServiceResponseAnnouncer
e ObjectBuilder

Handling a subscription fault

When the MessageHandlers tag is placed in the EventMap , it automatically subscribes to the destination
provided. The subscription attempt may throw an error (ie: attempting to subscribe to a subtopic in a channel
that doesn't accept subtopics). If you want to perform some action when the subscription cannot be made, you
can use a <faultHandlers> inner tag. Inside that handlers list, you can use the same tags you would in the main
body of an < EventHandlers > or <MessageHandlers> tag.

MethodInvoker

http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/eventannouncer
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/responseannouncer
http://mate.asfusion.com/page/documentation/tags/datacopier
http://mate.asfusion.com/page/documentation/tags/stophandlers
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer
http://mate.asfusion.com/page/documentation/tags/objectbuilder
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/eventhandlers

(This tag must be placed inside an < EventHandlers > tag or a < MessageHandlers > tag)

MethodInvoker is one of the most used tags. When placed inside a EventHandlers tag and the list of handlers is
executed, it will create an object of the class specified in the "generator" attribute. It will then call the function
specified in the "method" attribute on the newly created object. You can pass arguments to this function that

come from a variety of sources, such as the event itself, a server result object, or any other value. Unless you
specify cache="false", this object instance will be "cached" and not instantiated again.

Example:

<Met hodl nvoker
gener at or =" C assNaneTol nst ant i at e"
nmet hod="net hodToExecut e"
argunents="{["'argunmentl', "argunment2']}" />

The above example would be the same as doing the following in ActionScript code:

var nmyWdrker: C assNanmeTol nstantiate = new C assNanmeTol nstantiate();
nmyWor ker . met hodToExecut e(' argunent 1', 'argument?2');

The main difference is that in the case of the MethodInvoker, the object is created and the function executed
whenever the list of handlers is run and in the order specified in the list.

Attributes

generator

required
The generator attribute specifies what class should be instantiated and run.

Suppose you have a class called "MyWorker" in the package com.yourdomain.business. You can specify a
complete path to com.yourdomain.business.MyWorker:

<Met hodl nvoker
gener at or =" com your domai n. busi ness. MyWor ker "
met hod="net hodToExecut e"
argunents="{["argunmentl', 'argument2']}"/>

Generally you may want to use a binding to specify the class name. Assuming you have an import statement
like this in your Event Map:

i mport com your domai n. busi ness. M\yWr ker ;

or simply:

i nport com your domai n. busi ness. *;

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers

You can then instantiate your object using bindings:

<Met hodl nvoker
gener at or ="{ \yWor ker }"
nmet hod="net hodToExecut e"
argunents="{["argunmentl', "argunment2']}"/>

The advantage of using this syntax is that if you are using Flex Builder, you can press the command key (Mac)
or the Ctrl key (Windows) and click on the generator class (MyWorker in the example) and it will take you to the
class definition.

method

The method attribute specifies what function to call on the created object. If your class MyWorker contains a
function called doWork(), you would then write:

<Met hodl nvoker
gener at or ="{ \yWor ker }"
nmet hod="doWor k"

/>

arguments

If the function in your class has arguments, you can pass them via the "arguments" attribute. Suppose your
doWork function has the following signature:

public function doWrk(name: String, val ue: Nunber)

then you can pass those arguments as follows:

<Met hodl nvoker
gener at or ="{ \yWor ker }"
nmet hod="doWbr k"
argunents="{[' Tom , 36]}"/>

Note that the arguments attribute expects an array. Besides passing literal values, you can pass values coming
from the event that triggered the execution of the list of handlers:

<Met hodl nvoker
generator="{ MyWrker}"
nmet hod="doWbr k"
argunent s="{[event . user Nane, event.age]}"/>

This assumes that the event contained a userName property and an age property.

If this method invoker tag is inside an <resultHandlers> tag that originated from a < WebServicelnvoker >,
<HTTPServicelnvoker > or <RemoteObjectinvoker > tag, you can also pass values coming from the server result:

http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/httpserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker

<Renot ebj ect | nvoker service attributes....>
<resul t Handl er s>
<Met hodl nvoker
generator="{ MyWrker}"
nmet hod="doWbr k"
argurment s="{[resul t Obj ect. userNane, resultCbject.age]}"/>
</resul t Handl er s>
</ Renot ehj ect | nvoker >
Again, this assumes the server returned an object that contained a userName property and an age property.
If this MethodInvoker tag is inside an <faultHandlers> tag that originated from one of the service invoker tags,
you can also pass values coming from the server fault. This comes in handy when you want to handle possible
server errors.
<Renot e(bj ect | nvoker service attributes....>
<f aul t Handl er s>
<Met hodl nvoker
gener at or ="{ \yWor ker }"
nmet hod="doWbr k"
argunents="{[fault.faultDetail, fault.errorlD]}"/>
</ faul t Handl er s>

</ Renot ehj ect | nvoker >

You can also pass the complete event, resultObject, fault, data or lastReturn as an argument depending on
what your function expects.

For example, if the function has the following signature:
public function doWork(event:MyCustomEvent):void
you would be able to send the event as an argument of the method:
<Met hodl nvoker
gener at or ="{ \yWor ker }"

nmet hod="doWbr k"
arguments="{[event]}"/>

If you wanted to send a service result, you would pass the resultObject as an argument.

<Met hodl nvoker
gener at or ="{ \yWor ker }"
nmet hod="doWr k"
argunents="{[result Cbject]}"/>

Your worker function signature would depend on what you are expecting to receive from the server. If you are
using Flash Remoting, you might be getting a mapped class, such as a Customer.

public function doWork(customer:Customer)

If you are using HTTPService, you might be getting an XML object:

public function doWork(xmIDoc:XML)

You can also use the service fault, the sequence data or a lastReturn.

<Met hodl nvoker
gener at or ="{ \yWor ker }"
nmet hod="doWr k"
argunents="{[fault]}"/>

The data is always an object, so your function must accept an object:

public function doWork(data:Object)

<Met hodl nvoker
gener at or ="{ \yWor ker }"
nmet hod="doWr k"
argunents="{[data]}"/>

Receiving the value returned by a previous MethodInvoker execution:

<Met hodl nvoker
generator="{ MyWrker}"
net hod="doWbr k"
argunment s="{[l ast Return] }"/>

Of course you can use any combination of arguments:

<Met hodl nvoker
generator="{ MyWrker}"
nmet hod="doWbr k"
argunent s="{[event . age, resultCbject, "Tom]}"/>

Specifying only one argument

Although the arguments attribute expects an array, it is also possible to supply an object when there is only one
argument that the worker function expects. See these examples:

<Met hodl nvoker
generator ="{ MyWor ker}"
met hod="doWor k"
argument s="A string"/>

<Met hodl nvoker
gener at or ="{ \yWor ker }"
net hod="doWbr k"
argunents="{event}"/>

<Met hodl nvoker
gener at or ="{ \yWor ker }"
nmet hod="doWor k"
argunent s="{event. user Nane}"/ >

<Met hodl nvoker
generator ="{ MyWor ker}"
met hod="doWor k"
argument s="{resul Cbject}"/>

<Met hodl nvoker
gener at or ="{ \yWor ker }"
net hod="doWbr k"
argunent s="{resul Obj ect.userld}"/>

<Met hodl nvoker
gener at or ="{ \yWor ker }"
nmet hod="doWor k"
argunents="{l ast Return}"/>

Specifying the arguments in verbose mode
Finally, arguments can also be passed by using SmartObjects.
For example, if you want to pass event.userName and event.age, you can pass them as follows:
<Met hodl nvoker generator="{MWWrker}" nethod="doWrk">
<ar gunment s>
<Smart Cbj ect source="event" key="userNane" />

<Smart Cbj ect source="event" key="age" />
</ ar gunment s>

</ Met hodl nvoker >

cache

Boolean

The cache attribute lets you specify whether this newly created object should be kept live so that the next time
an instance of this class is requested, this already created object is returned instead.

For example, say you have two sequences that want to use the same instance of an object. Since the default
value for this attribute is "true", it will do that by default. On the other hand, if you wanted to have two different
instances, then you must set this attribute to "false".

<Event Handl ers type="nyEvent Type">

<Met hodl nvoker
generator="{ M/Wrker}" method="doWrk"
cache="fal se" />

</ Event Handl er s>
<Event Handl ers type="nyQ her Event Type" >

<Met hodl nvoker
generator="{ M/Wrker}" method="doDifferentWrk"
cache="fal se" />

</ Event Handl| er s>

Inner tags

Properties

You can add properties to your object by using the Properties tag inside the MethodInvoker tag. These
properties will be set before calling the function specified in the "method" attribute, so you can be sure that
those properties will be available when the function is executed. These properties must be public.

Suppose you are creating an instance of a ShippingCalculator class. This class has a property called
weightFactor and flatFee. In order to set those two properties, you can use the <Properties> inner tag. As
attributes of the Properties tag, you can specify the names of your properties and set the values of those
properties by setting the value of those attributes as follows:

<Met hodl nvoker
gener at or =" { Shi ppi ngCal cul ator}"

met hod="cal cul at eShi pping" >

<Properties wei ght Factor="0.5" fl at Fee="3" />

</ Met hodl nvoker >
Besides specifying literal values, you can assign values coming from the event that triggered the handlers:
<Met hodl nvoker
gener at or =" { Shi ppi ngCal cul at or } "
met hod="cal cul at eShi ppi ng" >
<Properties wei ght Factor="{event.factor}" flatFee="{event.fee}" />
</ Met hodl nvoker >
This assumes that the original event contained a factor property and a fee property.
If this MethodInvoker tag is inside a <resultHandlers> tag that originated from one of the service invoker tags,
you can also pass values coming from the server result:
<Renot e(bj ect | nvoker service attributes....>
<resul t Handl er s>
<Met hodl nvoker
gener at or =" { Shi ppi ngCal cul at or }"

met hod="cal cul at eShi ppi ng" >

<Properties wei ght Factor="{resul t Object.factor}"
flat Fee="{resultObject.fee}" />

</ Met hodl nvoker >
</resul t Handl er s>

</ Renot ehj ect | nvoker >
This assumes the server returned an object that contained a factor property and a fee property.
If this MethodInvoker tag is inside an <faultHandlers> tag that originated from one of the service builder tags,
you can also pass values coming from the server fault. This comes in handy when you want to handle possible
server errors.
<Renot e(bj ect | nvoker service attributes....>

<resul t Handl er s>

<Met hodl nvoker

generator="{ M/ErrorHandl er}"
nmet hod="handl eShi ppi ngError" >

<Properties nyErrorProperty="{fault.faultDetail}" />

</ Met hodl nvoker >

</resul t Handl er s>

</ Renot ehj ect | nvoker >

You can also use the complete resultObject, fault or data as a property depending on what your event
properties are.

For example, if the server returned a number with the value of the flat fee, you would be able to set the property
"flatFee" with the server result:

<Met hodl nvoker
gener at or =" { Shi ppi ngCal cul ator}"
net hod="cal cul at eShi ppi ng" >
<Properties flatFee="{resultChject}" />
</ Met hodl nvoker >
You can use the service fault:
<Met hodl nvoker
gener at or ="{ WErrorHandl er}"
met hod="handl eShi ppi ngError" >
<Properties error="{fault}" />
</ Met hodl nvoker >
You can also use the sequence data. The data property must be of type Object.
<Met hodl nvoker
gener at or =" { Shi ppi ngCal cul at or }"
met hod="cal cul at eShi ppi ng" >
<Properties nyProperty="{data}" />

</ Met hodl nvoker >

Finally, you can use the lastReturn

<Met hodl nvoker
gener at or =" { Shi ppi ngCal cul ator}"
met hod="cal cul at eShi ppi ng" >

<Properties nyProperty="{lastReturn}" />

</ Met hodl nvoker >

Using lastReturn

Every tag inside a handlers block generates a "lastReturn" that can be used by the immediately next tag. While
most tags do not return any value, you can make your method invokers take advantage of it.

If your function call returns something other than void, that value will be stored in the scope's "lastReturn" value.
This value can be used by other tags as they would use the event, the result object or server faults. This value
will be null if your function returns void.

For example, say you have a class that calculates shipping costs and you want to send that value along with
other things to the server. So your function would look like:

publ i c function cal cul at eShi ppi ng(wei ght : Nunber) : Nunber {
/1 do cal cul ation
return someNunber;

In your handlers block, you will call your class and then send the information to the server:

<Met hodl nvoker generator="{MWC ass}" net hod="cal cul at eShi ppi ng"
argunment s="{[event.itemMight]}" />

<WebServi cel nvoker argunents="{[lastReturn, event.itemd]}" service attributes....

</ WebSer vi cel nvoker >

Because your method call returned a value, the next tag (the WebServicelnvoker) can use it.

More information at Using Smart Objects (lastReturn) .

CommandInvoker

(This tag must be placed inside an < EventHandlers > tag or a < MessageHandlers > tag)

The CommandIinvoker tag is very similar to the Methodlnvoker tag, but limited. It only allows specifying the
generator class to instantiate. It will always call the method "execute" and pass the current event as its only

http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/eventmap/using-smart-objects#lastReturn
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/methodinvoker

argument. This tag is very useful when reusing Cairngorm commands.
<Conmandl nvoker gener at or =" CommandCl assNane" />

The above example would be the same as doing the following in ActionScript code:

var nmyCommand: CommandCl assName = new CommandCl assName() ;
nyComand. execut e(event) ;

CommandIinvoker is only a short-cut tag, as the same can be accomplished with a MethodInvoker tag:
<Met hodl nvoker

gener at or =" CommandC assNanmeTol nst anti at e"

nmet hod="execut e"

argunent s="{event}"/>

Note: when placed inside a MessageHandlers list, the command will receive a MessagingEvent.

Services

RemoteObjectInvoker

(This tag must be placed inside an < EventHandlers > tag or a < MessageHandlers > tag)

The RemoteObjectinvoker tag is used to create a Remote Object instance and call a method on the object
created. To use this tag, you need to specify the same attributes you would when creating a remote object with
the <mx:RemoteObject> tag. In addition, you need to specify what method to call. This tag will also accept all
mx.rpc.remoting.RemoteObject tag attributes (with the exception of the "operations" property).

<RemoteObjectinvoker destination=" YourDestination " source=" path.to.your.service " method=" methodToCall "
arguments=" {['argument1’ , 'argument2' 1}" />

The above example would be the same as doing the following:

<mx:RemoteObject id="myService " destination=" ColdFusion " source=" path.to.this.service " />
myService.methodToCall(‘'argument1', 'argument2');

You would also need to either create event handlers for the server result and fault or create a Responder to
handle them. That is not necessary when using the RemoteObjectinvoker tag because results and faults are

handled by Mate. See section " Handling a service result or fault ".

With this tag, you can also utilize an already created RemoteObject instance. This is useful when the same
services are used by several EventHandlers blocks or several EventMaps.

http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/services/handling-a-service-result-or-fault
http://mate.asfusion.com/page/documentation/tags/eventhandlers

Suppose you have a Remote Object tag (either in the event map itself or in a different file):

<mx:RemoteObject id="myService " destination=" ColdFusion " source=" path.to.this.service " />

You can call a method on that already created service as follows:

<Renot ebj ect | nvoker instance="{nyService}"
met hod="net hodToCal | "

argunents="{["'argunmentl', "argunment2']}" />
Attributes
method
required

The method attribute specifies what function to call on the remote object instance.

arguments

If the remote method has arguments, you can pass them via the "arguments" attribute.

Suppose you have a RemoteObject method called getPhotos and it expects a user name and an album name
as arguments. You can specify them with the arguments attribute:

<Renot eObj ect | nvoker
desti nati on="Your Desti nati on" source="path.to.your.service"
nmet hod="get Phot os"
argunents="{[' Tom ,' MW Al bumi]}" />

Note that the arguments attribute expects an array. Besides passing literal values, you can pass values coming
from the event that triggered the list execution:

<Renot e(bj ect | nvoker
desti nati on="Your Destination" source="path.to.your.service"
met hod="get Phot 0s"
argument s="{[event. user Nane, event.al bunj}"/>

This assumes that the event contained a userName property and an album property.

You can also pass the complete data or lastReturn as an argument depending on what your service expects.

<Renot eObj ect | nvoker
desti nati on="Your Desti nati on" source="path.to.your.service"
nmet hod="get Phot os"
argunents="{data}"/ >

<Renot eObj ect | nvoker
desti nati on="Your Desti nati on" source="path.to.your.service"
nmet hod="get Phot os"
argunents="{l ast Return}"/>

Of course you can use any combination of arguments:

<Renot e(bj ect | nvoker
destinati on="Your Destination" source="path.to.your.service"
net hod="get Phot 0s"
argunents="{[event.age, lastReturn, 'Tom]}"/>

instance

A RemoteObject instance

The instance attribute specifies the already created service instance to use to make the call. This attribute must
be supplied using bindings because it needs to point to an already created object.

Suppose you have a RemoteObiject already created:
<mx:RemoteObject id="myService " destination=" ColdFusion " source=" path.to.this.service " />

You can make a call to this service by using the RemoteObjectinvoker tag, with instance {myService}. Note that
any property you need for your service must be defined in the RemoteObject tag.

<RemoteObjectinvoker instance="{myService }" />

debug

Boolean

Whether to show debugging information for this RemoteObject resultHandlers and faultHandlers. If true, Console
output will show debugging information as those handlers run.

Inner tags

resultHandlers

A set of handlers to run when the server call returns a result. Inside this inner tag, you can use the same tags you
would in the main body of an < EventHandlers > block, including other service calls.

faultHandlers

A set of handlers to run when the server call returns a fault. Inside this inner tag, you can use the same tags you
would in the main body of an < EventHandlers >, including other service calls.

Handling a service result or fault

You can have a resultHandlers block and a faultHandlers block inside the tag to handle service results and faults.

<Renot e(bj ect | nvoker destinati on="YourDesti nation"
source="path.to.your. service"
nmet hod="net hodToCal | "
arguments="{['argunentl', 'argunent2']}">

<r esul t Handl er s>

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers

this |ist executes when server returns results ...
</resul t Handl er s>

<f aul t Handl er s>
... this |list executes when server returns an error
</ faul t Handl er s>

</ Renot ebj ect | nvoker >

See "Handling a service result or fault " for more information.

HTTPServicelnvoker

(This tag must be placed inside an < EventHandlers > tag or a < MessageHandlers > tag)

The HTTPServicelnvoker tag is used to create an HTTP Service instance and make a GET or POST request to
that service. To use this tag, you need to specify the same attributes you would when creating an HTTP service
with the <mx:HTTPService> tag (with the exception of xmiDecode, xmIEncode, and lastResult). In addition,
you need to specify what method to call. This tag will also accept all mx.rpc.http.HTTPService tag attributes.
<HTTPServicelnvoker url="URLToCall " />

The above example would be the same as doing the following:

<mx:HTTPService id="myServicelnstance " url=" http://www.example.com/services ">
myServicelnstance.send();

You would also need to either create event handlers for the server result and fault or create a Responder to
handle them. That is not necessary when using the HTTPServicelnvoker tag. See section "Handling a service

result or fault".

With this tag, you can also utilize an already created HTTPService instance. This is useful when the same
services are used by several EventHandlers blocks or several EventMaps.

Suppose you have a HTTP Service tag (either in the event map itself or in a different file):
<mx:HTTPService id="myService " url=" http://www.example.com/services " />
You can call a method on that already created service as follows:

<HTTPServicelnvoker instance=" {myService }" />

Attributes

url

http://mate.asfusion.com/page/documentation/tags/services/handling-a-service-result-or-fault
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers

required if no instance is specified

This attribute specify the address to send the request. Refer to mx.rpc.http.HTTPService documentation for
more information.

instance

An HTTPService instance

The instance attribute specifies the already created service instance to use to make the call. This attribute must
be supplied using bindings because it needs to point to an already created object.

Suppose you have a HTTPService already created:
<mx:HTTPService id="myService " url=" http://www.example.com/services " />

You can make a call to this service by using the HTTPServicelnvoker tag, with instance {myService}. Note that
any property you need for your service must be defined in the HTTPService tag.

<HTTPServicelnvoker instance=" {myService }" />

debug

Boolean

Whether to show debugging information for this HTTPService resultHandlers and faultHandlers. If true, Console
output will show debugging information as those handlers run.

Inner tags

SmartRequest

You can add variables to your HTTP request by using the SmartRequest inner tag. If using GET method, these
variables will be sent as query string parameters. Otherwise, they will be added to the POST request.

As attributes of the SmartRequest tag, you specify the names of the variables you want to send and set the
values of those variables by settings the value of the attributes.

Suppose you need to send a "photo_id" variable and a username variable with your request. Then you will
specify:

<HTTPSer vi cel nvoker instance="{myService}">
<Smar t Request
photo_id="17"
user name="{event . usernane}" />
</ HTTPSer vi cel nvoker >

resultHandlers

A set of handlers to run when the server call returns a result. Inside this inner tag, you can use the same tags you
would in the main body of an < EventHandlers > block, including other service calls.

faultHandlers

A set of handlers to run when the server call returns a fault. Inside this inner tag, you can use the same tags you
would in the main body of an < EventHandlers >, including other service calls.

Handling a service result or fault

You can have a resultHandlers block and a faultHandlers block inside the tag to handle service results and faults.
<HTTPSer vi cel nvoker url ="URLToCal | ">

<r esul t Handl er s>

this |list executes when server returns results ...
</resul t Handl er s>
<f aul t Handl er s>
... this |list executes when server returns an error
</ faul t Handl er s>

</ HTTPSer vi cel nvoker >

See "Handling a service result or fault " for more information.

WebServicelInvoker

(This tag must be placed inside an < EventHandlers > tag or a < MessageHandlers > tag)

The WebServicelnvoker tag allows you to create a Web Service (mx.soap.WebService) in your handlers list and
call a method on that web service, in one step. To use this tag, you need to specify its wsdl attribute that will
determine the address of the webservice. You also need to specify the method to call. In addition to those two,
this tag will accept all mx.rpc.soap.WebService tag attributes (with the exception of xmISpecialCharsFilter and
operations).

<WebSer vi cel nvoker
wsdl ="/ myservi ces/ nyService. cf c?wsdl "
nmet hod="ser ver Met hodToCal | "
argunents="{['argunmentl', "argument2']}" />

The above example would be the same as doing the following:
<mx:WebService id="myServicelnstance " wsdl="/myservices/myService.cfc?wsdl ">
myServicelnstance.serverMethodToCall('argument1', 'argument2');

You would also need to either create event handlers for the server result and fault or create a Responder to
handle them. That is not necessary when using the WebServicelnvoker tag.

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/services/handling-a-service-result-or-fault
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers

See section " Handling a service result or fault ".

With this tag, you can also utilize an already created WebService instance. This is useful when the same
services are used by several EventHandlers blocks or when using multiple event maps.

Suppose you have a WebService tag (either in the event map itself or in a different file):
<mx:WebService id="myServicelnstance " wsdl="/myservices/myService.cfc?wsdl ">
You can call a method on that already created service as follows:

<WebServicelnvoker instance=" {myService }" method=" serverMethodToCall " />

Attributes
wsdl

required if no instance is specified

This attribute specifies the address for the WebService definition file. Refer to mx.rpc.soap.WebService
documentation for more information.

method

required

The method attribute specifies what function to call on the web service instance.

arguments

If the remote method has arguments, you can pass them via the "arguments" attribute.

Suppose you have a WebService method called getPhotos and it expects a user name and an album name as
arguments. You can specify them with the arguments attribute:

<WbSer vi cel nvoker

wsdl ="/ nmyservi ces/ nyServi ce. cf c?wsdl "
nmet hod="get Phot os"

argunents="{[' Tom ,' W Al bunmi]}" />

Note that the arguments attribute expects an array. Besides passing literal values, you can pass values coming
from the event that triggered the list of handlers to execute:

<WebSer vi cel nvoker
wsdl ="/ myservi ces/ nyServi ce. cf c?wsdl "
met hod="get Phot 0s"
argunent s="{[event. user Nane, event.al bunj}"/>

This assumes that the event contained a userName property and an album property.

http://mate.asfusion.com/page/documentation/tags/eventhandlers

You can also pass the complete data or lastReturn as an argument depending on what your service expects.
<WebSer vi cel nvoker
wsdl ="/ myservi ces/ nyService. cf c?wsdl "

met hod="get Phot 0s"
argunent s="{data}"/ >

<WebSer vi cel nvoker

wsdl ="/ myservi ces/ nyService. cf c?wsdl "
met hod="get Phot 0s"

argunent s="{l ast Return}"/>

Of course you can use any combination of arguments:

<WbSer vi cel nvoker

wsdl ="/ nmyservi ces/ nyServi ce. cf c?wsdl "

nmet hod="get Phot os"

argunents="{[event.age, lastReturn, 'Tom]}"/>

instance

A WebService instance

The instance attribute specifies the already created service instance to use to make the call. This attribute must
be supplied using bindings because it needs to point to an already created object.

Suppose you have a WebService already created:
<mx:WebService id="myServicelnstance " wsdl="/myservices/myService.cfc?wsdl ">

You can make a call to this service by using the WebServicelnvoker tag, with instance {myService}. Note that
any property you need for your service must be defined in the WebService tag.

<WebServicelnvoker instance=" {myService }" method=" getPhotos" />

debug

Boolean

Whether to show debugging information for this WebServicelnvoker resultHandlers and faultHandlers. If true,
Console output will show debugging information as those handlers run.

Inner tags

resultHandlers

A set of handlers to run when the server call returns a result. Inside this inner tag, you can use the same tags you
would in the main body of an < EventHandlers > block, including other service calls.

faultHandlers

A set of handlers to run when the server call returns a fault. Inside this inner tag, you can use the same tags you

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers

would in the main body of an < EventHandlers >, including other service calls.

Handling a service result or fault

Just like all the "service invoker" tags, you can have a resultHandlers block and a faultHandlers block inside the
tag to handle service results and faults.

<WebSer vi cel nvoker
wsdl ="/ myservi ces/ nyService. cf c?wsdl "
nmet hod="ser ver Met hodToCal | "
argunents="{['argunmentl', 'argument2']}" >

<r esul t Handl er s>
this |list executes when server returns results ...
</ resul t Handl er s>

<f aul t Handl er s>
this |ist executes when server returns an error
</ faul t Handl er s>

</ WebSer vi cel nvoker >

See "Handling a service result or fault " for more information.

Handling a service result or fault

When a service is called, there are two type of responses you can get: either a result with the contents of what
the service returned, or a fault when there was an error when contacting the server or an error was thrown by the
server. It's important to note that these possible responses are received asynchronously, so that after the request
to the server was made, it is not possible to know when the response will be received.

When you use the service tags (RemoteObjectinvoker , WebServicelnvoker , HTTPServicelnvoker) inside an
EventHandlers block or MessageHandlers block and the event is dispatched or message is received, the server
request is made and the execution of the handlers continues. Any other handler placed after the service will
execute right after the server request is made. But what if you want to wait until the server responds to the
request? Inside all of the service invoker tags, you can place another list of handlers that will execute when thes
erver replies, or throws an error.

<WebServi cel nvoker instance="{nyServicelnstance}" ...>
<r esul t Handl er s>
this |list executes when server returns results ...
</ resul t Handl er s>

</ WebSer vi cel nvoker >

In the same way, you can place another list of handlers that will execute when the request ends up in an error.

<WebServi cel nvoker instance="{nyServicelnstance}" ...>

<f aul t Handl er s>
this |list executes when server returns a fault
</ faul t Handl er s>

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/services/handling-a-service-result-or-fault
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/httpserviceinvoker
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker

</ WebSer vi cel nvoker >

Of course you can have both sequences inside one service tag:
<WebServi cel nvoker instance="{nyServicelnstance}" ...>

<r esul t Handl er s>
this |ist executes when server returns results ...
</ resul t Handl er s>

<f aul t Handl er s>
this list executes when server returns a fault
</ faul t Handl er s>

</ WbServi cel nvoker >

Inside the resultHandlers or faultHandlers tags, you can place any other tag you would normally place in your
<EventHandlers > block. They are handler lists that run asynchronously when the server response is received.
Inside the resultHandlers, you have a special value your handlers that are inside the result or fault handlers
block can use: the"resultObject" that contains what was sent by the server as a response to the call made. Inside
the faultHandlers, they can access the"fault" that contains the server error. Those two values can be used as
arguments for Methodlnvoker s, EventAnnouncer s, other services, etc.

Those two sub-handlers are only run after the server response is received, so you can be sure that you will have
the values needed to continue execution. In this way, you can even create a chain of service calls, such that
one is called only when the response from the previous service call has been received.

For example, suppose you have an event of type"myEventType". When that event is dispatched, you would like
to make a service call and also call a method on an object to execute some business logic. When the response

of that server call, you want to create an event, perhaps to notify views that the data has been received and also
call a method passing the result so that is can save it in the model.

To do that, you would write your sequence as follows:

<Event Handl ers type="mnmyEvent Type" >
<WebServi cel nvoker instance="{nyServicelnstance}" ...>

<r esul t Handl er s>

<Event Announcer_ type="nyEvent TypeTwo"
gener at or =" Event Cl assNaneTol nstanti ate" />

<Met hodl nvoker generat or =" Wor ker Two"
met hod="r ecei veResul t s"
argunents="{resultoject}" />
</resul t Handl er s>

</ WebSer vi cel nvoker >

<Met hodl nvoker generat or =" Wor ker One"
net hod="doSonet hi ng />

</ Event Handl er s>

http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/eventannouncer
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/eventannouncer
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/eventhandlers

In this scenario, the following will happen:

1. The service call will be made

2. The WorkerOne function doSomething will be called

3. After some time, say 5 seconds, the server returns the results

4. A new event of type "myEventTypeTwo" will be dispatched by the EventBuilder

5. The WorkerTwo function receiveResults will be called with one argument containing the results of the
server call.

See Using Smart Objects for more information on the resultObject and fault.

EventAnnouncer

(This tag must be placed inside an < EventHandlers > tag or a < MessageHandlers > tag)

EventAnnouncer allows you to dispatch events from an EventHandlers block. When the list of handlers is
executed, it will create an event of the class specified in the "generator" attribute. It will then add any properties
to the newly created event and dispatch it. You can pass properties to the event that come from a variety of
sources, such as the original event that triggered the list execution, a server result object, or any other value.

Example:

<Event Announcer generator="M/Event Cl ass" type="nyEvent Type">
<Properties nyProperty="nyVal ue" nyProperty2="100"/>
</ Event Announcer >

The above example would be the same as doing the following in ActionScript code:

nyEvent : MyEvent O ass = new MyEvent Cl ass(" nyEvent Type", true);
nyEvent . nyProperty = "nyVal ue";
nyEvent . nyProperty2 = 100;
di spat chEvent (nyEvent);

The main difference is that in the case of the EventAnnouncer, the event is dispatched whenever the event
handlers list is run and in the order specified in the list.

Attributes

generator

required

The generator attributes specifies what class of event should be instantiated and dispatched. If this attribute is
not specified, then a DynamicEvent will be generated.

Suppose you have a custom event called "MyEvent" in the package com.yourdomain.events. You can specify a
complete path to com.yourdomain.events.MyEvent:

http://mate.asfusion.com/page/documentation/tags/eventmap/using-smart-objects
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers

<Event Announcer
gener at or ="com your donei n. event s. M\yEvent "
type="nyEvent Type" />

Generally, you may want to use a binding to specify the class name. Assuming you have an import statement
like this in your Event Map:

import com.yourdomain.events.MyEvent;

or simply:

import com.yourdomain.events.*;

You can then declare your event class using bindings:
<Event Announcer

gener at or ="{ WEvent } "
type="nyEvent Type" />

The advantage of using this syntax is that if you use Flex Builder, it will allow you to navigate to your
MyEvent.as file by pressing Command and clicking on the class name (MyEvent) inside the generator attribute.

type

required

The type attribute specifies the event type you want to dispatch. Suppose you have an event class definition as
follows:

public class MyEvent extends Event {
public static const MY_EVENT TYPE: String = "nyEvent Type";

public nyProperty: String;
public nyProperty2: uint;
}

You can then specify the type attribute with the event type literal string:
<Event Announcer

gener at or ="{ MyEvent } "
type="nyEvent Type" />

Or you can use the binding syntax again:

<Event Announcer
generator="{ MEvent}"
type="{ MyEvent. MY_EVENT _TYPE}" />

This will allow the compiler to check that the type you specified exists.

constructorArgs

Object or Array

If your event has a constructor signature that differs from the default Flash Event constructor, you need to
specify the parameters with this attribute.

bubbles

Although you can specify the event's bubbles property, whether you set it to true or false will have little effect, as
the event will be dispatched from the Mate Dispatcher itself (the Application by default).

cancelable

Boolean
Default value: true

Indicates whether the behavior associated with the event can be prevented.

Inner tags

Properties

You can add properties to your event by using the SmartProperty tag inside the EventAnnouncer tag. The
properties to set in your event must be public.

As attributes of the Properties tag, you can specify the names of your properties and set the values of those
properties by setting the value of those attributes.

Suppose you are creating an event of the class shown previously (MyEvent) and assigning values for its two
properties (myProperty and myProperty?2):

<Event Announcer generator="{MFEvent}" type="{MEvent. MY _EVENT_TYPE}" >
<Properties
nyPr operty="nyVal ue"
nyPr operty2="100" />
</ Event Announcer >

Besides specifying literal values, you can assign values coming from the event that triggered the event handlers
list execution:

<Event Announcer generator="{MFEvent}" type="{MEvent. MY_EVENT_TYPE}" >
<Properties
myProperty="{event. user Nane}"
nyProperty2="{event. age}" />
</ Event Announcer >

This assumes that the original event contained a userName property and an age property.

If this event announcer tag is inside a <resultHandlers> block that originated from any service tag

http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/httpserviceinvoker

(RemoteObjectinvoker , WebServicelnvoker , HTTPServicelnvoker), you can also pass values coming from the
server result:

<Renpt evj ect Il nvoker service attributes....>
<r esul t Handl er s>
<Event Announcer generator="{MWEvent}"
type="{ MyEvent . M\Y_EVENT_TYPE}" >

<Properties
nyProperty="{resul t bj ect. user Nane}"
nyProperty2="{resul t Obj ect. age}" />
</ Event Announcer >

</ resul t Handl er s>
</ Renpt eMj ect | nvoker >

This assumes the server returned an object that contained a userName property and an age property.

If this event builder tag is inside an <faultSequence> tag that originated from a Service builder tag, you can
also pass values coming from the server fault. This comes in handy when you want to handle possible server
errors.

<Renpt evj ect | nvoker service attributes....>
<f aul t Handl er s>
<Event Announcer generator="{MWEvent}"
type="{ MyEvent . M\Y_EVENT_TYPE}" >

<Properties
nyProperty="{fault.faultDetail}"
nyProperty2="{fault.errorl D}" />
</ Event Announcer >

</ faul t Handl er s>
</ Renpnt eMj ect | nvoker >

You can also use the complete resultObject, fault or data as a property depending on what your event
properties are.

For example, if the server returned a string, you would be able to set the event property "myProperty” with the
server result:

<Renpt ebj ect | nvoker service attributes....>
<r esul t Handl er s>

<Event Announcer generator="{MWEvent}"
type="{ MyEvent . MY _EVENT_TYPE}" >

<Properties
nyProperty="{result hj ect}"
</ Event Announcer >
</ resul t Handl er s>
</ Renpt eMbj ect | nvoker >

You can also use the service fault or the sequence data.

<Renpt evj ect | nvoker service attributes....>

http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/httpserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker

<faul t Handl er s>
<Event Announcer generator="{MWEvent}"
type="{ MyEvent . M\Y_EVENT_TYPE}" >
<Properties
nyProperty="{faul t}"
</ Event Announcer >

</ faul t Handl er s>
</ Renpt evj ect | nvoker >

<Event Announcer generator="{MEvent}" type="{MEvent. MY _EVENT_TYPE}" >

<Properties nyProperty="{data}"
</ Event Announcer >

Dispatcher

The Dispatcher can be used to dispatch an event from anywhere in your application. It can be used as a tag
within your views and can be instantiated in ActionScript classes. Although views can dispatch events using
their "dispatchEvent()" method, if these views as used within Popup windows, the event will not be received by
other views or the Event Map. By using the Dispatcher, we can guarantee that the event will be received by all
registered listeners.

Example:
<mat e: Di spat cher generator="M/Event C ass” type="nyEvent Type">
<mat e: event Properti es>
<mat e: Event Properti es nyProperty="nyVal ue" />

</ mat e: event Properti es>

</ mat e: Di spat cher >

Using dispatcher as a tag

Using the dispatcher tag allows you to dispatch an event from any MXML component. You can use the
dispatcher attributes to make the dispatcher create the event for you or you can create an event and use the
dispatcher only to dispatch the already created event.

It also allows you to receive direct responses such that only the object that dispatched the event receives this
response.

Attributes

generator

The generator attributes specifies what class of event should be instantiated and dispatched.

http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker

Suppose you have a custom event called "MyEvent" in the package com.yourdomain.events. You can specify
a complete path to com.yourdomain.events.MyEvent:

<mate:Dispatcher

generator="com.yourdomain.events.MyEvent"

type="myEventType" />

Generally, you may want to use a binding to specify the class name. Assuming you have an import statement
like this in your Event Map:

import com.yourdomain.events.MyEvent;

or simply:

import com.yourdomain.events.*;

You can then declare your event class using bindings:

<mate:Dispatcher

generator="{MyEvent}"

type="myEventType" />

type

String

The type attribute specifies the event type you want to dispatch. Suppose you have an event class definition as
follows:

public class MyEvent extends Event {

public static const MY EVENT TYPE:String = "myEventType" ;
public myProperty:String;
public myProperty2:uint;

You can then specify the type attribute with the event type literal string:

<mate:Dispatcher
generator="{MyEvent}"
type="myEventType" />
Or you can use the binding syntax again:
<mate:Dispatcher
generator="{MyEvent}"
type=" {MyEvent.MY EVENT TYPE}" />

This will allow the compiler to check that the type you specified exists.

Inner tags

eventProperties

You can add properties to your event by using the EventProperties tag inside the eventProperties inner tag. The
properties to set in your event must be public.

As attributes of the EventProperties tag, you can specify the names of your properties and set the values of those
properties by setting the value of those attributes.

Suppose you are creating an event of the class shown previously (MyEvent) and assigning values for its two
properties (myProperty and myProperty2):

<mate:Dispatcher

generator="{MyEvent}"

type="{MyEvent.MY EVENT TYPE}">

<mate:eventProperties>

<mate:EventProperties

myProperty="myValue"
myProperty2="100" />

</mate:eventProperties>

</mate:Dispatcher>

ResponseHandler

The ResponseHandler tag can be used to receive a response from an event that was dispatched from this
dispatcher instance.

See Receiving a response to a dispatched event.

ServiceResponseHandler

The ServiceResponseHandler tag can be used to receive a service response from an event that was dispatched
from this dispatcher instance.

See Receiving a response to a dispatched event.

Receiving a response to a dispatched event

After dispatching an event using the Dispatcher tag, the view that dispatched this event can receive a response.
Those responses are sent from the EventMap within the EventHandlers block that was listening for the event
dispatched by the Dispatcher.

It's important to note that this response will be received only by the view instance that dispatched the event,
even if there are other instances of the same view or other views dispatch the same event.

Using the ResponseHandler tag

<nmat e: ResponseHand| er type="searchCustoner Resul t"
response="onSear chResul t Recei ved(event.result)" />

Using the ServiceResponseHandler tag

A simple way to receive a response generated by a service call. It contains result and fault handlers you can use
as you would when receiving a normal service (ie: RemoteObiject) result or fault. It also contains a response
handler that can be used for any situation.

<mat e: Servi ceResponseHandl| er
result="trace(event.result)"
fault="trace(event.fault.faultString)"
response="trace(event.data)" />

This tag listens for responses sent by ServiceReponse tags created in the EventHandlers block that was listening
for the event dispatched by the Dispatcher. The use of this tag has no effect if its matching counterpart is not
included in the EventMap . ServiceResponseAnnouncer _tags must be included in a resultHandlers and in a
faultHandlers.

Different ways of dispatching an event

http://mate.asfusion.com/page/documentation/tags/responsehandler
http://mate.asfusion.com/page/documentation/tags/responsehandler
http://mate.asfusion.com/page/documentation/tags/serviceresponsehandler
http://mate.asfusion.com/page/documentation/tags/serviceresponsehandler
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/responsehandler
http://mate.asfusion.com/page/documentation/tags/serviceresponsehandler
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer

Suppose you want to create and dispatch a MyEvent event of type MyEvent.MY_EVENT_TYPE with properties
myProperty="myValue" and myProperty2=100

Creating the event and using the Dispatcher tag to dispatch it

In this scenario, you have a simple Dispatcher tag:
<mat e: Di spat cher id="nyDi spatcher" />

And you create the event as usual:

nyEvent : MyfEvent = new MyEvent (MyEvent. MY_EVENT_TYPE) ;
nyEvent . nyProperty = "myVal ue";
myEvent. nyProperty2 = 100;

Then you use the dispatcher to dispatch it:

myDispatcher.dispatchEvent(myEvent);

Using the default event type and class and setting properties at dispatch time

You can set the event type that you will be dispatching and the class to instantiate as your event in the
Dispatcher tag:

<mate:Dispatcher
generator="{MyEvent}"
type="{MyEvent.MY EVENT TYPE}">

The Dispatcher will create an event of the given class and type, so it is not necessary to manually create it. In
order to dispatch it, you use the dispatcher's generateEvent() function:

myDispatcher.generateEvent () ;

If you need to add properties to the event, as in the original example, you can add those properties at the
moment of dispatching the event in the form of an object:

myDispatcher.generateEvent ({myProperty: "myValue" , myProperty2: 100});

Creating an event with properties set in the Dispatcher tag

The dispatcher tag allows you to define all properties of an event within the Dispatcher tag itself. You can
assign the event type, the event class to instantiate and the properties that the event will contain:

<mate:Dispatcher

id="myDispatcher"
generator="{MyEvent}"
type="{MyEvent.MY EVENT TYPE}">
<mate:eventProperties>
<mate:EventProperties
myProperty="myValue"
myProperty2="100" />
</mate:eventProperties>
</mate:Dispatcher>
You then dispatch the event at any time, for example, when the user clicks on a button:
<mx:Button click="myDispatcher.generateEvent ()" />

On the button click, the event with the properties set in the Dispatcher tag will be dispatched.

Using dispatcher in ActionScript

When you have a class that is not a visual component, it is not possible to make it dispatch an event unless you
extend it from EventDispatcher or make it implement the IEventDispatcher interface.

The dispatcher class allows you to dispatch events in non-visual components or any other ActionScript class.
You only need to instantiate an instance of Dispatcher, create the event and use the instance to dispatch it:
myDispatcher:Dispatcher =mew Dispatcher();
myEvent :MyEvent =new MyEvent (MyEvent.MY EVENT TYPE);
myEvent.myProperty ='myValue'}
myEvent .myProperty2 = 100;
Then you use the dispatcher to dispatch it:

myDispatcher.dispatchEvent (myEvent) ;

Injectors

(This tag must be placed inside an < EventMap > tag)

An Injectors tag defined in the Event Map is a container for InjectorPropertys that will inject properties coming
from a source to a target.

"{MyTarget Cl ass}"

Attributes

target

Class
required

The class that, when instantiated, should trigger the Propertylnjector s to run. This target must be supplied using
bindings, but this binding is only executed once, when the event map is created.

debug

Boolean

Whether to show debugging information for this Injectors block. If true, Console output will show debugging
information as the injectors are applied.

start

Event handler

In the start attribute you can supply an event handler for the event of type ActionListEvent.START. This event is
dispatched right before the actions (normally ~ Propertylnjector items) are called, when the list starts execution.

Example:

"{MTarget Cl ass}" "trace(' Execution of injectors |ist
started!")"

end

Event handler

http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/propertyinjector
http://mate.asfusion.com/page/documentation/tags/propertyinjector

In the end attribute you can supply an event handler for the event of type ActionListEvent.END. This event is
dispatched right after all the items in the list have been executed.

Example:

"{MyTarget Cl ass}" “"trace(' Execution of injectors list ended!'"')"

Inner tags

Propertylnjector

Propertylnjector s defined in the Injectors tag will apply or bind properties specified in the source to the target
specified in the parent Injectors target. See more information in the Propertylnjector documentation

Other tags

All other tags allowed inside EventHandlers and MessageHandlers are allowed inside the Injectors. This allows
you to inject other properties to the target, such as data coming from a server call (one-time only).

Propertylnjector

(This tag must be placed inside an <Injectors> tag)

An Injectors tag defined in the Event Map is a container for InjectorPropertys that will inject properties coming
from a source to a target.

"{MTarget Cl ass}"

<Propertylnjector targetKey="propertyToPopul ate" source="{M/Nodel }"
sour ceKey="pr opert yFronwModel " />

Attributes

targetKey
String
required

The property of the target (defined in the parent Injectors tag) that needs to be injected.

source

Class or Object

http://mate.asfusion.com/page/documentation/tags/propertyinjector
http://mate.asfusion.com/page/documentation/tags/propertyinjector
http://mate.asfusion.com/page/documentation/tags/propertyinjector
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers

The object that will be the source that will populate the target property. If this is an object, it will used as is. If
this is a class, then an already instantiated object will be retrieved from the cache (instantiated by
MethodInvoker or ObjectBuilder with cache=true). If cache does not contain an object of this class, a new
object will be created and added to the cache.

sourceKey
String

Property of the source that will be used to populate the target property. Mate will attempt to bind this property to
the target property so that whenever the property on the source changes its value, the target will be updated
with the new value.

Injecting views

You can inject values to properties declared in views. If you use the default settings in the tag InjectionSettings,
then you only need to create a property in your view. Then you need a source that will store the value the view
will get. For example, if you have a UserManager class that stores the current user, and you want to show
information about that user in a view, you can do the following:

1. Have a view called UserInformation

2. In that view, have a property called "user".

3. In your UserManager class, have a public bindable property called currentUser (this property can be
read-only by the use of getters).

4. Inject this property into the view.

"{UserlInformation}"

<Propertylnjector targetKey="user" source="{UserManager}" sourceKey="current User"

When the view is instantiated, the property user will be injected into it with the value coming from the
UserManager. If the property on the UserManager is bindable, the view will get the latest value any time it
changes.

The source can be any "model" that stores data. We use "Managers", but the data could also be stored in a
ModelLocator. For example:

"{User | nformation}"

<Propertylnjector targetKey="user" source="{Mddel Locator.getlnstance()}"
sour ceKey="current User" />

Our source will be an already instantiated object (the instance of the ModelLocator), and then we'll bind the
property currentUser to the target property.

Injecting view adapters

Coming soon

/>

http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/objectbuilder

DataCopier

(This tag must be placed inside an < EventHandlers > tag or a < MessageHandlers > tag)

The DataCopier tag allows you to save values into some object. A possible storage is the "data" object available
while the sequence is running.

<Dat aCopi er destinati on="data" destinati onKey="soneProperty” source="result"
sour ceKey="sonmeProperty" />

The DataCopier tags is a handy tag to quickly copy values from a source into some storage. You can use the
event handlers scope "data" as a temporary storage from where handlers that follow in the list can read values.
You can also use some other external variable as the storage.

Attributes

source

The source attribute specifies where to get the data to copy from. It can be one of this options:
e event
e data
eresult
o fault
e lastReturn
e message
e scope
e currentEvent (maybe the same or different from the event if the tag is placed inside a resultHandlers block,
faultHandlers block or any handlers block other than EventHandlers and MessageHandlers.

or another object. If you wish to specify another object, you need to use bindings:
<Dat aCopi er source="{nyModel}" ... />

sourceKey

If you need a property from the source instead of the source itself, you need to specify this attribute.

destination

The destination attribute specifies where to place the data. It can be one of this options:

e cvent
edata
eresult

or another object.

<Dat aCopi er destinati on="{nyMdel}" ... />

destinationKey

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers

If you want to set the value of a property of the destination object, instead of the destination itself, you need to
specify this attribute.

Listener

Listener allows you to register a view as a listener for an event type. As long as the event bubbles up oris
dispatched via the mate: Dispatcher tag or class, the registered listeners will be notified.

Example:

<mate:Listener type="myEventType" method="handleThisEvent" />

or

<mate:Listener type="myEventType" receive="handleThisEvent (event)" />

To handle the event received, you can use the method attribute or the receive attribute. The above examples
accomplish exactly the same goal.

If the dispatcher of the event is a child component, we could do the same in ActionScript:
addEventListener ("myEventType", handleThisEvent) ;
Note, however, that this will only work for events that are bubbling up from children components. The Listener

tag, on the other hand, allows you to listen to events dispatched anywhere in your application, even from views
contained in PopUp windows. Note: for PopUps, views must use the Dispatcher tag.

Attributes
type

required

The type attributes specifies the type of event for which we would like to register.
Suppose you have an event class definition as follows:

public class MyEvent extends Event {

public static const MY EVENT TYPE:String = "myEventType" ;

You can then specify the type attribute with the event type literal string:

<mate:Listener type="myEventType" method="handleThisEvent" />

Or you can use the binding syntax:

<mate:Listener type="{MyEvent.MY EVENT TYPE}" method="handleThisEvent" />

This will allow the compiler to check that the type you specified exists.

method

either method or receive must be provided

The method attribute specifies the method to call when an event is received. Called method will automatically
receive the event.

If you have a listener tag as follows:

<mate:Listener type="myEventType" method="handleThisEvent" />

You will need to create a method called "handleThisEvent" that will be called when an event of type
"myEventType" is received.

private function handleThisEvent (event:MyEvent) :void {

// handle the event

receive

either method or receive must be provided

The receive event handler allows you to handle the event inline. In this attribute you can write simple
ActionScript statements.

If, for example, you wanted to change the state of the view when an event is dispatcher, you could do that
inline as in the following example:

<mate:Listener

type="myEventType"

receive="currentState="myOtherState'" />

In this inline handler you also have access to the event that was dispatched.

<mate:Listener
type="myEventType"

receive="trace (event.myProperty)" />

ResponseAnnouncer

(This tag must be placed inside an < EventHandlers > tag or a < MessageHandlers > tag)

The ResponseAnnouncer tag is placed inside an EventHandlers block, so that when an object dispatches an
event, and the list of handlers runs, this tag will allow you to send responses directly to the object that

dispatched the event. These responses are actually custom events that you need to create. Using the
ResponseAnnouncer tag is very similar in form and purpose of the EventAnnouncer tag, with the important

difference that when using the EventAnnouncer tag, all listeners of that event will be notified, whereas when
using the ResponseAnnouncer tag, only the object that dispatched the original event will be notified.

Example:
<Event Handl ers type="nyEvent Type">

<ResponseAnnouncer generator="M/Event C ass" type="nyEvent Type">

<Properties nyProperty="nyVal ue" nyProperty2="100"/>

</ ResponseAnnouncer >
</ Event Handl er s>
The use of this tag will have no effect if the original event was not dispatched using the Dispatcher tag.
Moreover, this tag will have no effectifno ResponseHandler tag was added as an inner tag to the Dispatcher

tag.

For a more in-depth description of attributes and inner tags, see EventAnnouncer .

Attributes
type
required

The type of the event to generate as the response. This type is the one that the < ResponseHandler > tag will
listen to. See < ResponseHandler > for more information.

generator

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventannouncer
http://mate.asfusion.com/page/documentation/tags/eventannouncer
http://mate.asfusion.com/page/documentation/tags/responsehandler
http://mate.asfusion.com/page/documentation/tags/eventannouncer
http://mate.asfusion.com/page/documentation/tags/responsehandler
http://mate.asfusion.com/page/documentation/tags/responsehandler

The event class to instantiate. If this attribute is not specified a DynamicEvent will be generated.

constructorArguments

Array

If your event has a constructor signature that differs from the default Flash Event constructor, you need to
specify the parameters with this attribute.

Using a custom event

Using a custom event gives the most control over what you send as a response. You can set any properties on
that event with data coming from various places such as the result of a server call. When the ResponseHandler
gets this response in the form of a custom event, its handler will know what properties to look for in this event.

To send a custom event as a response, you specify the generator attribute to point to your custom event class.
Both the class and event type can be specified using bindings:

<ResponseAnnouncer generator="{MEventC ass}" type="{MEvent C ass. \¥_EVENT_TYPE} " >
<Properties nyProperty="nyVal ue" nyProperty2="100"/>
</ ResponseAnnouncer >

Using a DynamicEvent

If you don't want to create a custom event only to receive a response, you can use a DynamicEvent. You do so

by simply not specifying any generator. You must still supply the event type, which can be a simple string. You
just need to ensure that the event type matches exactly that one specified by the < ResponseHandler > in the
view. You can set any property to this dynamic event. In the view, you will receive this dynamic event, and

while you will be able to get to the properties you set, you won't be able to get compiler errors if you make
mistakes in the names of the properties you are trying to access.

<ResponseAnnouncer type="nyEvent Type">

<Properties nyProperty="nyVal ue" mnyProperty2="100"/>

</ ResponseAnnouncer >

InlineInvoker

(This tag must be placed inside an < EventHandlers > tag or a < MessageHandlers > tag)

Inlinelnvoker allows you to call a method without having to instantiate an object (compare with MethodInvoker).

http://mate.asfusion.com/page/documentation/tags/responsehandler
http://mate.asfusion.com/page/documentation/tags/responsehandler
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/methodinvoker

You only need to provide a method to call, which can be a method created in the event map (within a Script
block), a static method on a class, or method provided by an already created object or singleton.

Any value returned by the function will be available in the lastReturn. See Using lastReturn and Using Smart
Objects (lastReturn)

Example:
"met hodToExecut e"”
“{['"argumentl', "argument2']}"
Attributes
method
required

The method attribute specifies what function to call. If you had a function called doWork(), you would then write:

"doWor k"

arguments

If the function in your class has arguments, you can pass them via the "arguments" attribute. Suppose your
doWork function has the following signature:

public function dowrk(name: String, val ue: Nunber)

then you can pass those arguments as follows:

"doWor k"
“{[' Tom, 36]}"

Note that the arguments attribute expects an array. See = Methodlnvoker (arguments section) for more information.

Calling a static method

With the Inlinelnvoker tag, you can call static methods. For example, you could call the function random() of
the Math library:

"Mat h. randont'

Remember that any value returned by the function will be available in the lastReturn (Using lastReturn).

Calling a local method

http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker/using-lastreturn
http://mate.asfusion.com/page/documentation/tags/eventmap/using-smart-objects#lastReturn
http://mate.asfusion.com/page/documentation/tags/eventmap/using-smart-objects#lastReturn
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker/using-lastreturn

If you have created a method in your event map, you can call it with the Inlinelnvoker tag:

<nx: Scri pt >
private function nyMethod():void {
trace('you called ne!');

}
11>

</ nx: Scri pt>

<Event Handl ers type="nyEvent Type" >
“myMet hod"
</ Event Handl er s>

Calling a method on a singleton class

Suppose you have a singleton class that contains the method "myMethod" and that you access the singleton
instance by the getinstance() method. Then you could call your the method by:

"{M/Si ngl et on. get I nst ance() . nyMet hod}"

ObjectBuilder

(This tag must be placed inside an < EventHandlers > tag or < MessageHandlers > tag)

When placed inside an EventHandlers block, and the list of handlers is executed, it will create an object of the
class specified in the "generator" attribute. You can pass arguments to the constructor of this class that come

from a variety of sources, such as the event itself, a server result object, or any other value. Unless you specify
cache="false", this object instance will be "cached" and not instantiated again when using the MethodInvoker

or Propertylnjector s

Example:

<Obj ect Bui | der generat or="Cl assNaneTol nstanti ate"
constructor Argunents="{["'"argunmentl',"argunent2']}" />

The above example would be the same as doing the following in ActionScript code:

var myQbj ect: O assNaneTol nstantiate = new Cl assNaneTol nstanti ate(' argunent 1
"argunment2');

Attributes

generator

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/propertyinjector

required

The generator attribute specifies what class should be instantiated.

Suppose you have a class called "MyClass" in the package com.yourdomain.business. You can specify a
complete path to com.yourdomain.business.MyClass:

<Cbj ect Bui | der gener at or ="com your donai n. busi ness. M/Cl ass" />

Generally you may want to use a binding to specify the class name. Assuming you have an import statement
like this in your Event Map:

i mport com your domai n. busi ness. Myd ass;

or simply:

i mport com your domai n. busi ness. *;

You can then instantiate your worker using bindings:

<Obj ect Bui | der generator="{MC ass}" />

The advantage of using this syntax is that if you are using Flex Builder, you can press the command key (Mac)

or the Ctrl key (Windows) and click on the generator class (MyWorker in the example) and it will take you to the
class definition.

constructorArguments

Array

If the constructor of you class requires arguments, you can pass them via the "constructorArguments" attribute.
Suppose your constructor has the following signature:

public function Myd ass(nane: String, val ue: Nurmber)

then instantiating the class as follows will work:

<Cbj ect Bui | der generator="{MC ass}"
construct or Argunents="{[' Tom , 36]}"/>

Note that the constructorArguments attribute expects an array. Besides passing literal values, you can pass
values coming from the event that triggered the handlers list:

<Obj ect Bui | der
generator="{MWC ass}"

argument s="{[event . user Nane, event.age]}"/>

This assumes that the event contained a userName property and an age property.

You can also pass values coming from a service result, fault, or others. See MethodInvoker , arguments attribute
for more information.

cache

Boolean

The cache attribute lets you specify whether this newly created object should be kept live so that the next time
an instance of this class is requested, this already created object is returned instead. The instance can be
requested by a MethodInvoker or a Propertylnjector .

For example, you may want to have a MethodInvoker use an already instantiated instance created by an
ObjectBuilder. Since the default value for this attribute is "true", it will do that by default. On the other hand, if
you wanted to have two different instances, then you must set this attribute to "false".

<Event Handl ers type="mnmyEvent Type">
<Obj ect Bui | der generator="{MC ass}" />
</ BEvent Handl er s>

<Event Handl ers type="myQ her Event Type" >
<Met hodl nvoker generator="{MC ass}" net hod="doWork" />

</ Event Handl| er s>

Inner tags

Properties

You can add properties to your instantiated object by using the Properties tag inside the ObjectBuilder tag.
These properties must be public.

Suppose you are creating an instance of a ShippingCalculator class. This class has a property called
weightFactor and flatFee. In order to set those two properties, you can use the <Properties> inner tag. As
attributes of the Properties tag, you can specify the names of your properties and set the values of those
properties by setting the value of those attributes as follows:
<Cbj ect Bui | der gener at or ="{ Shi ppi ngCal cul ator}">

<Properties wei ght Factor="0.5" flatFee="3" />
</ Obj ect Bui | der >

Besides specifying literal values, you can assign values coming from the event that triggered the sequence:

<Obj ect Bui | der gener at or ="{ Shi ppi ngCal cul at or}">

http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/propertyinjector
http://mate.asfusion.com/page/documentation/tags/methodinvoker

<Properties wei ght Factor="{event.factor}" fl atFee="{event.fee}" />
</ Cbj ect Bui | der >
This assumes that the original event contained a factor property and a fee property.

Other sources can include service results or faults, values returned by a Methodlnvoker , etc.

StopHandlers

(This tag must be placed inside an < EventHandlers > tag or a < MessageHandlers > tag)

Handlers inside an EventHandlers block run all listeners in order. The StopHandlers tag lets you stop execution
of the handlers before it reaches the end of the list. The list can be stopped based on whether the "lastReturn” is
equal to some value, or based on an external function that tells whether or not the sequence must be stopped.
<St opHandl ers | ast Ret ur nEqual s="soneVal ue" />

or

<St opHandl ers st opFuncti on="nySt opSequenceFunti on" />

Attributes

lastReturnEquals

either lastReturnEquals or stopFunction must be provided

If there exists a MethodInvoker right before the StopHandlers tag, and the execution of the function called by
the Methodlnvoker returned a value ("lastReturn"), you can compare it to some other value and stop the
subsequent handlers execution if it is equal.

<St opHandl er s | ast Ret ur nEqual s="soneVal ue" />

Though other tags return values, generally speaking, only Methodlnvoker s return values you can use. Normally,
that value is nullified after other tags are executed. See Using lastReturn .

stopFunction

either lastReturnEquals or stopFunction must be provided

A more flexible approach than using lastReturnEquals is to use the stopFunction attribute and handle the logic
externally. The function that you implement needs to return true if the list execution must stop or false if not.

<St opHandl ers st opFuncti on="nySt opSequenceFunti on" />

http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker/using-lastreturn

Then you implement your evaluation function:
private function myStopHandlersFunction (scope:IScope) :Boolean {
... here you do some evaluation to determine
whether to stop the sequence or not...
return false; //or return true;

}

eventPropagation

String

Possible values are: noStop, stopPropagation, stoplmmediatePropagation (default: stoplmmediatePropagation)

This attribute lets you stop the event that triggered the execution of the handlers list (EventHandlers). If there are
any listeners for this event other than this list of handlers, they will not be notified if the propagation of the event

is stopped. See Flex documentation regarding the difference between stop propagation and stop immediate

propagation.

The default of this attribute is to immediate stop propagation of the event ("stoplmmediatePropagation™).

Using the scope parameter in the stopFunction

The stopFunction function you implement must receive one argument of type IScope. You can use the values
in the EventHandlers ' scope to determine whether or not the execution must be stopped.

Implementors of the interface 1Scope contain these properties and functions:

event: the event that triggered the list execution. Although it is of type flash.events.Event, you can castitto a
custom event.

data: the data object. It is used to store custom information while the list is running.
lastReturn: the returned value from the last handler that run.

isRunning(): a function that returns whether the list execution is currently running.
dispatcher: an event dispatcher that can be use to dispatch events.

currentEvent : the event that triggered the handlers list or inner handlers list, such as resultHandlers or
faultHandlers (ResultEvent and FaultEvent respectively) to run .

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers

Depending on the type of handlers list the StopHandlers tag is in, this scope can be of one the Scope subtypes:

1.
MessageScope

This type exists when the StopHandlers tag is inside a < MessageHandlers > block as opposed to an
<EventHandlers >. It contains properties specific to a "message received" event:

message : the message received (type mx.messaging.messages.IMessage)

messageEvent : the original MessageEvent (type mx.messaging.events.MessageEvent)

fault: if the consumer subscription generated a fault, it will be available in this property

ServiceScope

This sequence type exists when the StopHandlers tag is inside a <resultHandlers> or <faultHandlers> block
that generated from a Service call (either by using WebServicelnvoker , HTTPServicelnvoker or
RemoteObjectinvoker tags). It contains data returned by the server.

result: the result object returned by the server when the server did not generated a fault.

fault: the fault (if any) generated by the service call.

resultEvent: the result event generated by the service call. This property is of type
mx.rpc.events.ResultEvent

faultEvent: the fault event generated by the service call. This property is of type mx.rpc.events.FaultEvent

Handlers can also be stopped inside a function called by MethodInvoker_that either implements the
IScopeReceiver interface (see Implementing the IScopeReceiver interface) or by passing the scope as an
argument in the function call.

ResponseHandler

(This tag must be placed inside a <Dispatcher> tag)

The ResponseHandler tag can be used to receive a response from an event that was dispatched from a
dispatcher instance. After dispatching an event using the Dispatcher tag, the view that dispatched this event
can receive a response. Those responses are sent from the EventMap within the EventHandlers block that was
listening for the event dispatched by the Dispatcher.

It's important to note that this response will be received only by the view instance that dispatched the event,
even if there are other instances of the same view or other views dispatch the same event.

<mat e: Di spat cher >

http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/httpserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/methodinvoker
http://mate.asfusion.com/page/documentation/tags//implementing-the-iscopereceiver-interface
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/eventhandlers

<mat e: ResponseHand| er type="searchCustoner Resul t"
response="onSear chResul t Recei ved(event. nySearchResult)" />

</ mat e: Di spat cher >

Responses are handled by either the response event handler or by the method attribute. The response event
handler allows you to write inline code. If you use the method attribute, you must implement a method that
receives an event (either a custom event or a DynamicEvent).

Attributes
type

Type of the event that this ResponseHandler is listening to. This type needs to match the ResponseAnnouncer
type defined in the ListenerSequence in the EventMap .

response

either response or method must be specified

Event handler that receives the "response". The event received is triggered by a ResponseAnnouncer_created in
the EventMap . This event will contain any properties setinthe = ResponseAnnouncer by using the Properties
tag.

method

either response or method must be specified

Method that will handle the response event. It must accept a custom event (or Event that can be casted within
the method) or a DynamicEvent.

ServiceResponseAnnouncer

(This tag must be placed inside a <ListenerSequence> tag)

The ServiceResponseAnnouncer tag is placed inside an EventHandlers block, so that when an object
dispatches an event, and the list of handlers runs, this tag will allow you to send responses directly to the object
that dispatched the event.

These responses are 3 predefined events:

eresponse
eresult
o fault

Because of those predefined events, this tag is used inside a <resultHandlers> block or <faultHandlers> block

http://mate.asfusion.com/page/documentation/tags/responseannouncer
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/responseannouncer
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/responseannouncer
http://mate.asfusion.com/page/documentation/tags/eventhandlers

that are generated after server calls. This response will contain the server result when placed inside a
resultHandlers, and the server fault when placed inside a faultHandlers. In addition, you can supply an object
that will be found in the "data" property of the event or any other custom property by using the <Properties> tag.

Example:
<Renot ebj ect | nvoker ...>

<I-- result handlers list gets executed when service returns with a result -->
<r esul t Handl er s>

"result"”
</resul t Handl er s>

<l-- server fault -->
<f aul t Handl er s>

"faul t"
</ faul t Handl er s>

</ Renot ehj ect | nvoker >

The use of this tag will have no effect if the original event was not dispatched using the Dispatcher tag.
Moreover, this tag will have no effectifno ServiceResponseHandler tag was added as an inner tag to the
Dispatcher tag.

See <ServiceResponseHandler > for more information.

Attributes
type

required

The type of the event to generate as the response. This type is the one that the < ServiceResponseHandler > tag
will handle. response, result, or fault are valid values.

data

Any object that you wish to send in the data property of the event sent as the response that will be received by
the ServiceResponseHandler tag.

Inner tags
Properties
You can add properties to the event sent as the response by using the Properties tag inside the

ServiceResponseAnnouncer tag. The properties set will be dynamically added to the ResponseEvent that serves
as the response.

http://mate.asfusion.com/page/documentation/tags/serviceresponsehandler
http://mate.asfusion.com/page/documentation/tags/serviceresponsehandler
http://mate.asfusion.com/page/documentation/tags/serviceresponsehandler
http://mate.asfusion.com/page/documentation/tags/serviceresponsehandler

As attributes of the Properties tag, you can specify the names of your properties and set the values of those
properties by setting the value of those attributes.

"result"

<Properties nyProperty="{resultOoject.property}"/>

ServiceResponseHandler

(This tag must be placed inside a <Dispatcher> tag)

The ServiceResponseHandler tag can be used to receive a response from an event that was dispatched from a
dispatcher instance. After dispatching an event using the Dispatcher tag, the view that dispatched this event

can receive a response. Those responses are sent from the EventMap within the EventHandlers block that was
listening for the event dispatched by the Dispatcher.

It's important to note that this response will be received only by the view instance that dispatched the event,
even if there are other instances of the same view or other views dispatch the same event.

This tag is a simple way to receive a response generated by a service call. It contains result and fault handlers
you can use as you would when receiving a normal service (ie: RemoteObject) result or fault. It also contains a
response handler that can be used for any general situation.

<mat e: Di spat cher >

<mat e: Ser vi ceResponseHandl| er
result="trace(event.result)"
fault="trace(event.fault.faultString)"
response="trace(event.data)" />

</ mat e: Di spat cher >

Attributes

result

Event handler that receives "result" type of service responses. The event received is triggered by a

ServiceResponseAnnouncer _ with type="result" created in the EventMap . When the ServiceResponseAnnouncer
tag is placed inside a resultHandlers block, this result event will contain the following properties:

eresult

o fault (null)

e data (might be null if no data was supplied in the ServiceResponseAnnouncer _tag)

e any other properties set in the ServiceResponseAnnouncer by using the Properties tag.

fault

http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer

Event handler that receives "fault" type of service responses. The event received is triggered by a

ServiceResponseAnnouncer _ with type="fault" created in the = EventMap . When the ServiceResponseAnnouncer
tag is placed inside a faultHandlers block, this fault event will contain the following properties:

eresult (null)
o fault
e data (might be null if no data was supplied in the ServiceResponseAnnouncer _tag)

any other properties set in the ServiceResponseAnnouncer_ by using the Properties tag.

response

Event handler that receives "response” type of service responses. The event received is triggered by a
ServiceResponseAnnouncer _ with type="response" created in the EventMap . This event will contain the
following properties:

eresult (null if ServiceResponseAnnouncer was placed inside a faultHandlers block)

e fault (null if ServiceResponseAnnouncer was placed inside a resultHandlers block)
e data (might be null if no data was supplied in the ServiceResponseAnnouncer _tag)

any other properties set in the ServiceResponseAnnouncer by using the Properties tag.

Debugger

The Debugger tag allows debugging your Mate code (EventHandlers and sub-handlers blocks,
MessageHandlers, etc). When using this tag, you specify a level of debugging, which will filter the type of
messages you see.

It is recommended that you remove this tag from your code when you are ready to deploy. Its use during
production will impact performance if you enabled the debugging in many objects (ie: in many EventHandlers)
or if you specified a low debugging level such as ALL or DEBUG.

<mat e: Debugger | evel ="{Debugger. ALL}" />

Attributes

level

int
Provides access to the level the debugger is currently set at. Value values are:

e Debugger.FATAL: designates events that are very harmful and will eventually lead to application failure

e Debugger.ERROR: designates error events that might still allow the application to continue running.

e Debugger.WARN: designates events that could be harmful to the application operation

e Debugger.INFO: designates informational messages that highlight the progress of the application at
coarse-grained level.

e Debugger.DEBUG: designates informational level messages that are fine grained and most helpful when
debugging an application.

e Debugger.ALL: intended to force a target to process all messages.

http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer
http://mate.asfusion.com/page/documentation/tags/serviceresponseannouncer
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers

Best Practices

Events

A fundamental part of Mate are the events, since all communication between the different parts of the
application is made via events.

The EventHandlers in the EventMap subscribe to listen to events of particular types. The type specified is very
important because it will determine whether or not a sequence must be run. This type is a string and that string
must be unique throughout your whole application.

We define this type as a constant in the event itself. Suppose you have an event called CustomerEvent:

import flash.events.Event;

public class CustomerEvent extends Event {

public function CustomerEvent (type:String, bubbles:Boolean= true, cancelable:Boolean= true) {

super (type, bubbles, cancelable);

We add a constant for the event type:
public static const ADD:String = "addCustomerEvent" ;

In our event map, then, we can use this constant as the event type. This helps us not making mistakes when
typing the event type.

<Event Handl ers type="{Cust oner Event. ADD} " >

</ Event i—landl ers>

You can use the same in your view Listeners:

<mat e: Li st ener type="{CustonerEvent. ADD}"/>

And in your dispatchers:

<mat e: Di spat cher generator="{CustonmerEvent}" type="{Custoner Event. ADD}" ...>

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventmap

Creating a unique type

Since the event type must be unique, you can append the name of your event class so that it will be less likely
to conflict with other events:

"add" + "CustomerEvent"= "addCustomerEvent"

public static const ADD:String = "addCustomerEvent";

If you want to ensure there are no conflicts, you can also use the full package name as part of the event type:
public static const ADD:String = "com.mydomain.events.CustomerEvent.ADD";

The above approach is not recommended if this event is a view event declared by the Event metatag in the
view, as it will make the type too large and unreadable in parent views that wish to add event handlers for that
event.

Having several types in the same event

You can have more than one type in the same event. As long as all those types defined use and need the same
properties, they can be put together. For example, adding, updating and removing a customer all need a
customer property and it makes sense to create only one event for all those types (assume you have a class
Customer):

public class CustomerEventextendsEvent {
public static const ADD:String = "addCustomerEvent" ;
public static const UPDATE:String = "updateCustomerEvent" ;
public static const DELETE:String = "deleteCustomerEvent" ;
public customer:Customer;
public function CustomerEvent (type:String, bubbles:Boolean= false, cancelable:Boolean= true)

super (type, bubbles, cancelable);

Bubbling property

When an event has it "bubbles" property set to false, only listeners added explicitly to the object that dispatched
the event will be notified when the event is dispatched.

If you use the < Dispatcher > tag in your views or the Mate Dispatcher class in your other classes and PopUps,
whether you set the event to bubble up or not will not make much difference, since the EventMap and other

views registered will still be notified of the event.

However, if you use the view's dispatchEvent() function (every Display Object is a Dispatcher) and dispatch the
event as you would normally do:

var myEvent:CustomerEvent = new CustomerEvent(CustomerEvent.ADD);
dispatchEvent(myEvent);

the aforementioned rules will apply and other views and the event map will not be notified unless you set the
event property bubbles to true. Just so that you don't have to remember this every time you create an event:

new CustomerEvent(CustomerEvent.ADD, true)

you can set this property as true by default in your constructor:

public function CustomerEvent(type:String, bubbles:Boolean= true, cancelable:Boolean= true)
and then this code will work fine:

var myEvent:CustomerEvent = new CustomerEvent(CustomerEvent.ADD);
dispatchEvent(myEvent);

Built-in Events

An EventHandlers block can listen to any event that bubbles up or that has been dispatched by using the Mate
Dispatcher . Any Flex built-in event can also be used as long as it bubbles up. For example, an EventHandlers
block can listen to FlexEvent. APPLICATION_COMPLETE event.

The Event Map

The Event Map should be placed in an mxml file by itself and added to the Application file. Typically, an
application will create many event types, so it is recommended to have several Event Maps, grouping related
event types in each. For example, you may have an event map that handles all Login-related events (login
check, logout, forgot password, login success, etc) and a different event map for all the event that relate to
updating a user's information (user add, user delete, user update, etc).

The component that defines the event map should extend from EventMap .

Also see Where should the Event Map go?

http://mate.asfusion.com/page/documentation/tags/dispatcher
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/dispatcher
http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/eventmap/where-should-the-event-map-go

Generators

For every generator attribute, you can use a shorter way of specifying the class name. Say you have a class
called com.mydomain.MyWorker that you want to instantiate in an EventHandlers block. Instead of specifying
the class name as a string: generator="com.mydomain.MyWorker", you can use a binding:

<Met hodl nvoker generator="{MWrker}" />

Note that you also need to have an import com.mydomain.* statement at the top of your EventMap .

This allows you to jump to the class if you are using Flex Builder. You can press the command key (Mac) or the
Ctrl key (Windows) and click on the generator class (MyWorker in the example) and it will take you to the class

definition.

It is important to note that this binding will be executed only once because we are binding to class, which
doesn't change during the life of the application.

Service Invokers

Service Invokers (WebServicelnvoker , HTTPServicelnvoker , and RemoteObjectinvoker) let you create a service
instance in the event sequence. This works great for small projects, prototyping and "I just need this service call"
type of projects. As a best practice, however, all services should be defined in a separate file. This file can be

called "Services.mxml" and be placed in its own services folder or in the business folder. In order to call one of
those re-defined services, you can use the same tags (WebServicelnvoker , HTTPServicelnvoker , and
RemoteObjectinvoker), but instead of defining all the specific properties (WSDL address, endpoint, etc), you
simply use the instance attribute, specifying what already created service instance to use.

Using the instance attribute allows you to reuse services instead of defining them in your event handlers. You
can create an instance of the services in your event map, and then reference it anywhere in your map:

[Bindable] private var services:Services = new Services();

<Renot e(bj ect | nvoker instance="{services. nyService}" ... >

In order for this work, all services (RemoteObject, HTTPService or WebService) in your Services.mxml file must
have an id assigned to them. You will then use that id when assigning an instance for your
RemoteObjectinvoker , HTTPServicelnvoker or WebServicelnvoker tags.

For the above example, your Services.mxml file must contain a RemoteObject tag:

<nx: Renot eObj ect id="myService" ... [>

No result and fault handlers are needed for this tag.

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/eventmap
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/httpserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/httpserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/remoteobjectinvoker
http://mate.asfusion.com/page/documentation/tags/services/httpserviceinvoker
http://mate.asfusion.com/page/documentation/tags/services/webserviceinvoker

A sample Services.mxml file:

<?xm version="1.0" encodi ng="utf-8"?>
<nx: Obj ect xm ns: mx="http://ww. adobe. con’ 2006/ nxmi " >

<nx: Renot eCbj ect id="nyService" destination="Col dFusi on" source="soneCFC' />
</ nmx: Qbj ect >

As a middle-ground solution, you can also specify the service within your event map and reference to it by
specifying the instance within the invoker tag.

For example, in your event map, you will have these two set of tags:
<nx: Renot eCbj ect id="nyService" ... />
<Event Handl ers type="nyEvent Type">

<Renot eObj ect | nvoker instance="{nyService}" ... >
</ BEvent Handl er s>

How to

Tutorials and how-to guides.

Extending Mate

In the weather widget example , we use the Yahoo! Astra Web API that contains utilities classes that make it
simpler to retrieve weather data from Yahoo! Weather. This API has a class called WeatherService. To retrieve
weather information, you simply write the following code:

var weat her Servi ce: Weat her Servi ce = new Weat her Servi ce();
weat her Servi ce. get Weat her (1 ocation, unit);

When the weather service returns with the information, it dispatches an event:
WeatherResultEvent WEATHER _LOADED

When it encounters an error, it dispatches an error event:

WeatherErrorEvent.INVALID LOCATION

But we would like to be able to handle these two results as a list of handlers in our resultHandlers block by

making a call to the weather service and receiving each type of event in its own handlers list, much like we do
when calling a WebService.

http://mate.asfusion.com/page/examples/weather-widget

Pseudo code for this would look like this:
<Weat her Loader ><! -- cal |l s weat her service -->

<r esul t Handl er s>
<!-- handle the result here -->
</ resul t Handl er s>

<f aul t Handl er s>
<!-- handle the fault here -->
</ f aul t Handl er s>

</ Weat her Loader >

Creating this wrapper for the WeatherService class lets us include it in our EventHandlers and MessageHandlers
and let us easily handle those results and faults.

The WeatherService also needs the location for which we want to retrieve the weather information and the unit
of measure we want to use (°C or °F). To pass that information we can either enter that information in the
<WeatherLoader> tag itself or by using the <SmartProperties> inner tag. Because the location information will
be changing depending on user interaction (ie: if the user enters his/her zip code in the text input), we should
use the <SmartProperties> inner tag because it will allow us to retrieve that data from the event that triggered
the call.

The pseudo code for that will look like this:
<Weat her Loader | ocati on="92614" ><!-- calls weather service -->
<r esul t Handl er s>
<l-- handle the result here -->
</resul t Handl er s>
<f aul t Handl er s>
<l-- handle the fault here -->
</ f aul t Handl er s>

</ Wat her Loader >

Implementing the tag

Our tag will be called WeatherLoader. We first need to create a class with that name that will extend from
AbstractServicelnvoker and will implement IAction. We need to implement |Action to be able to place the tag
inside EventHandlers blocks. While it is not required to extend from AbstractServicelnvoker, doing so will provide
us with the result and fault inner-handlers.

This class will also need public properties for the data we needed: the location and the unit of measure. Those

http://mate.asfusion.com/page/documentation/tags/eventhandlers
http://mate.asfusion.com/page/documentation/tags/messagehandlers
http://mate.asfusion.com/page/documentation/tags/eventhandlers

properties will be populated by the SmartProperties tag.

package com asfusi on. weat her. mat e. ext ensi ons

{
i mport com asf usi on. mat e. sequencel tens. *;
i mport com yahoo. webapi s. weat her . \\eat her Ser vi ce;
i mport com yahoo. webapi s. weat her. events. *;

public class Wat her Loader extends Abstract Servicel nvoker
i mpl ements | Action

public | ocation: String;
public unit: String;
public url:String = '"http://weat her.yahooapi s. coni forecastrss';
/1 the service that we are w apping
private weat her Ser vi ce: Weat her Servi ce ;
}
}

The constructor

In the class constructor we'll instantiate the weather service we are wrapping. We'll also set the property
"currentinstance” to point to "this". currentinstance is defined in the class AbstractAction. It is the object that
will receive the property values specified in the <SmartProperties> tag. Because our class has the location and
unit properties, we'll set the currentinstance to our own class instance.

public function WeatherLoader() {

weatherService = new WeatherService();

currentinstance = this;

}

The run method

Every handler needs a "run" method that gets called when the handlers list is executing each of its tags. We'll
override this method to do what we want our class to do when our tag is called. In this method we will make the
call to the WeatherService. In this method will also create the inner handlers for the result and fault.

Inner handlers blocks are created when an event is dispatched. In the case of a RemoteObject, for example, the
RemoteObiject dispatches the ResultEvent when the result gets back. When that event is dispatched, the tags
contained in resultHandlers tag are executed. Those events can contain data. The ResultEvent contains a
result object with the contents of what the server returned. In our resultHandlers, we access that object by using
the {resultObject} smart object. But we could also access that event directly by using the {currentEvent} smart
object.

Because we are now creating a custom tag for our own events, we need to specify what event will trigger the
resultHandlers execution and what event will trigger the faultHandlers execution. We also need to specify who is
dispatching those events.

The WeatherService class dispatches aWeatherResultEvent. WEATHER_LOADED when the result gets back, and
a WeatherErrorEvent.INVALID_LOCATION when there is an error. We'll use those two events to trigger our result

and fault inner handlers executions. We do so by creating those inner handlers as follows:
this.createlnnerHandlers(scope, WeatherResultEvent. WEATHER _LOADED, resultHandlers);

and

this.createlnnerHandlers(scope, WeatherErrorEvent.INVALID_LOCATION , faultHandlers);

The method createlnnerHandlers is defined by theAbtractServicelnvoker class. The scope argument contains
the scope within which this tag is called (the scope is defined by the EventHandler tag that contains this action
item). The third argument is the inner handlers block that should be started when the event is received. The
names "resultHandlers" and "faultHandlers" are defined by the AbstractServicelnvoker class, but you could
create your own.

At the end of the method, we make the call to the WeatherService:

weatherService.getWeather(location, unit);

The complete code for the run method would look like this:

override protected function run(scope:IScope): void {

// specify that the dispatcher of the result and error event is the weatherService object
innerHandlersDispatcher = weatherService;
if (this.resultHandlers && resultHandlers.length > 0){

this.createlnnerHandlers(scope, WeatherResultEvent WEATHER LOADED, resultHandlers);

if (this.faultHandlers && faultHandlers.length > 0){

this.createlnnerHandlers(scope, WeatherErrorEvent.INVALID _LOCATION , faultHandlers);

weatherService.getWeather(location, unit);
}
Using the tag

We can include our tag inan EventHandlers list, getting the location and unit information from the event that
was dispatched. When we receive the weather result, we call WeatherManager.setWeather() method. This
method receives the Weather object that was retrieved by the service. The event that triggers the resultHandlers
is of type WeatherResultEvent WEATHER _LOADED as we specified in our run method of our custom tag class.

http://mate.asfusion.com/page/documentation/tags/eventhandlers

This event contains a Weather object in the "data" property. To access that data, we need to use the
SmartObject "currentEvent", which represents the WeatherResultEvent that triggered the inner handlers.

The code:

<Event Handl ers type="{Wat her Event . GET}" >

<ext ensi ons: Weat her Loader> <!-- nmake the call to the service -->
<Smart Properties |location="{event.|ocation}" unit="{event.unit}" />

<ext ensi ons: resul t Sequence>
<I-- receive the results contained in the currentEvent.data property
(Weat her Resul t Event contains a data property) -->
<Met hodl nvoker generat or ="{\Weat her Manager}" net hod="set Weat her"
argunent s="{current Event.data}" />
</ extensi ons: resul t Sequence>
<ext ensi ons: f aul t Sequence>
<l-- receive an error event. The error event contains a data property that
contains the reason for the error -->
<Met hodl nvoker generat or ="{\Wat her Manager}" net hod="handl eFaul t"
argunent s="{current Event . data}" />
</ ext ensi ons: f aul t Sequence>

</ ext ensi ons: Weat her Loader >

</ Event Handl| er s>

Diagrams

One-way communication: from views to business logic

Two-way communication: Dispatcher and ResponseHandler tags
One-way communication from business logic to views: Listener tag
Two-way communication via model: Using an adapter

Two-way communication via model: Using view injection

Core classes

http://mate.asfusion.com/assets/content/diagrams/one_way.png
http://mate.asfusion.com/assets/content/diagrams/two_ways.png
http://mate.asfusion.com/assets/content/diagrams/listener_tag.png
http://mate.asfusion.com/assets/content/diagrams/model_adapter.png
http://mate.asfusion.com/assets/content/diagrams/two_way_view_injection.png
http://mate.asfusion.com/assets/content/diagrams/MateDiagram.png

Actions diagram

PDF versions for download

One-way communication: from views to business logic

Two-way communication: Dispatcher and ResponseHandler tags

One-way communication from business logic to views: Listener tag

Two-way communication via model: Using an adapter

Core classes

Actions diagram

http://mate.asfusion.com/assets/content/diagrams/actions.png
http://mate.asfusion.com/assets/content/diagrams/one_way.pdf
http://mate.asfusion.com/assets/content/diagrams/two_ways.pdf
http://mate.asfusion.com/assets/content/diagrams/listener_tag.pdf
http://mate.asfusion.com/assets/content/diagrams/model_adapter.pdf
http://mate.asfusion.com/assets/content/diagrams/MateDiagram.pdf
http://mate.asfusion.com/assets/content/diagrams/actions.pdf

